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Pi-Shaker: A New Workflow for Augmented Instruments
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ABSTRACT

We present a project that explores the application of ef-
ficient digital signal processing techniques for interactive
music applications across a range of devices and platforms,
focusing on visual programming. As a test case, we imple-
ment physically informed models of sound synthesis and
sound spatialisation that can respond in real time to per-
formative gestures. We compare the strengths and weak-
ness of implementations in several languages and how they
can be integrated to best take advantage of these differ-
ences.

1. INTRODUCTION

With the increasing power of small scale microprocessors,
the types of real time digital signal processing tasks typical
of desktop computers are increasingly possible with hand-
held devices. One of the remaining challenges is to port
the power of desktop class signal processing tool chains to
these devices. In this paper we describe a project to ap-
ply the power of the Kronos signal processing language to
drive a gesturally responsive handheld digital instrument.

Hand held interactive digital instruments, like the eShaker
[1], demonstrate the possibility for stand-alone devices to
perform similarly to the traditional combination of gestu-
ral controllers attached to desktop computers, such as the
bEADS shaker [2] and the T-Stick [3].

For this project we developed a prototype handheld dig-
ital instrument, the Pi-Shaker, using the small and inex-
pensive Raspberry Pi Zero computer. An image of the Pi-
Shaker prototype is shown in Figure 1.

For audio signal processing we implemented versions of
the well-established PhISEM percussion model [4] in Pure
Data (Pd) [5] and developed workflows for compiling Pd
extensions using the visual Veneer environment and Kro-
nos langauge for synthesis and reverb.

2. BACKGROUND

The porting of digital audio languages to mobile and small
scale devices has developed in accord with the growing
popularity and power of these devices for both DIY elec-
tronics [6] [7] and commercial mobile phones [8] [9] [10].
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Figure 1. Pi-Shaker prototype

Real time synthesis based on physical models is ideal for
mapping gestural and spatial strategies to DSP responsive-
ness, yet can be somewhat demanding computationally.
Our criteria for evaluating the Pi-Shaker included three in-
teraction gestures corresponding to Schaeffer/Chion’s cat-
egories of sounds: Impulse (hit), Iterative (shake) and Sus-
tained (tilt) [11]. We also drew upon the more extensive
framework for gestural mapping to physical modelled sound
outlined in the PHYSMISM project [12]. Because we are
using low cost devices, our evaluations also explored the
differing computing performance and algorithmic affor-
dances of implementations using native Pd and Veneer-
generated externals.

2.1 Kronos, the DSP Compiler

Kronos is a metaprogrammable static circuit compiler tar-
geted at musical signal processing [13]. It generates ef-
ficient mixed-rate circuits based on the paradigm of dis-
crete reactive systems [14]. The language is designed to
constrain user programs to static data flow, which enables
the compiler to perform significant analysis and optimiza-
tion. Build artifacts do not depend on any runtime libraries,
apart from optionally using the C runtime for mathemati-
cal functions. As such, it is inherently suitable for targeting
embedded systems.

The Kronos compiler is based on LLVM [15], a middle-
to backend code generation framework that is capable of
cross-compilation. This means we can run the compilation
process on a powerful computer, and deploy the standalone
binaries to a more resource-constrained device such as the
Raspberry Pi Zero.

2.2 Veneer, the Web Patcher

Veneer [16] is a web application that provides a patching
interface to the Kronos programming language. It can inte-

ICMC 2021 - The Virtuoso Computer - Pontificia Universidad Catdlica de Chile

102



Proceedings of the ICMC

IIIHHH%HHHEIHEIII
Acceleration H Particle model H Envelope generator

Figure 2. Instrument model overview

Body model

grate in real time with a native execution engine, or use an
embedded execution engine based on WebAssembly and
the just-in-time compiler in the browser itself.

Veneer is designed for interactive programming. Any
changes to the user program are compiled in real time. Fur-
ther, programs can have elements the user can directly ma-
nipulate, such as sliders, dials, pads and number boxes.

2.3 Producing Native Binaries from Web Applications

Notably, the execution engine embedded in Veneer [16]
does not contain the full LLVM [15] code generator, but
uses Binaryen, a lighter-weight WebAssembly code gener-
ator. Integrating a full cross-compiler to a web application
seems impractical as of this writing due to the size of the
LLVM codebase.

An interesting solution to this problem is remote compi-
lation. A prior example is the Faust Online Compiler [17],
which combines an integrated development environment
(IDE) built as a web application, with a server-based com-
piler. The user may write a program in the browser, submit
it for compilation over the network, and finally download
the finished build artifacts.

3. METHODOLOGY
3.1 Algorithm

Our instrument model is based by the well-known physi-
cally informed method for synthesizing percussion instru-
ments such as shakers, maracas and tambourines [4].

Based on the incoming excitation, the system generates
a random impulse train that simulates particle collisions.
Each collision is given an exponentially decaying enve-
lope.

The sum of all the envelopes is multiplied by a noise
source for phase randomization, and the enveloped noise
is processed with a body model, such as a resonator bank,
to provide the timbral characteristics for a range of percus-
sion instruments. An overview of the algorithm is shown
in Figure 2.

As shown in previous research [4], an infinite number of
exponentially decaying overlapping envelopes can be gen-
erated by convolution of the impulse train, efficiently im-
plemented as a simple one-pole filter.

3.2 Hardware implementation

The hardware elements used to build the Pi-Shaker include
the Raspberry Pi Zero W computer, audio output was sent
via the i2s protocol to an Adafruit MAX08357 Amp Break-
out board, then to a 40mm speaker. Gestural data was cap-
tured by the accelerometer on an Adafuit Playground Ex-
press board and sent via MIDI over serial to the Raspberry
Pi. All components were powered by a rechargeable bat-
tery over USB. The Raspeberry Pi ran Pd patches using
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Figure 3. Veneer function export settings

externals created as described in Section 3.3. The Circuit
Playground was programmed in the Arduino IDE to map
the X, Y and Z accelerometer outputs into three MIDI con-
trol change messages sent to the Raspberry Pi.

3.3 Compiler as a Web Service

To facilitate deployment of Veneer patches on a variety of
platforms, we developed an online compilation service ac-
cessible via a central web server. The server contains a
job queue and an artifact repository, based on CouchDB
[18]. Build agents claim jobs from the queue and deploy
artifacts, which become available for users to download.

A build agent consists of a simple Python script, CMake-
driven build process, the Kronos static compiler, devel-
opment kits related to the platform being built for, and
glue code written in both kronoslang and C++ to provide
the mapping between the discrete reactive signal model in
Kronos and the host paradigm.

3.3.1 Kronos—Pd interface

In the case of Pure Data [19], we must resolve the mapping
from Kronos clock domains to either messages or signals.
In addition, signals can have many data types per frame in
Kronos, while Pd maintains a one-to-one correspondence
between 32-bit floating point channels and patch cords.

Because Kronos programs are generic, some user assis-
tance is required. For a function to be exported from Ve-
neer to Pd, the user must specify the basic mapping for
each argument. Currently, the export interface supports
signal inputs with an arbitrary number of channels, control
parameters with default values, higher and lower bounds,
and constants. Each signal input is represented by one or
more Pd signal inlets, while each control parameter gener-
ates a message inlet.

Separately, each interactive widget, such as a slider or a
knob, can be exported. Veneer looks for any named wid-
gets and provides an option to export them. In Pd, wid-
gets become message inlets, and their current value is the
default setting. The export definition interface is demon-
strated in Figure 3.
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Table 1. Cross-compilation environment

config | key value

env RASPBIAN_ROOTFS | path to Raspbian file system
agent | toolchain path to toolchain file

ke ——mcpu armll76jzf-s

ke --mtriple arm-linux—-gnueabihf

The Kronos-side glue code written for the build agent
splits multi-channel inputs and outputs into multiple mono-
phonic channels to facilitate the Pure Data model. Each
control parameter becomes a message inlet, with the arrival
of messages driving reactive computation. Control rate
clocks are derived by subdividing the main audio clock.

3.3.2 Cross-compilation for the Raspberry Pi

We provide the Raspberry Pi builds by cross-compiling
from Ubuntu Linux. As a basis, the toolchain prepared by
Stefan Profanter ! was used to cross-compile the C++ part
of each external. The system libraries and headers were ob-
tained from the Raspbian Buster distribution and its Pure
Data package. The Kronos code is compiled by the Kronos
static compiler | kc |, which is inherently a cross-compiler
on Ubuntu Linux, due to the system package for LLVM
[15] supporting the Arm processors found in Raspberry Pi.

Cross-compilation settings are summarized in Table 1.
The build agent script must be configured to cross-compile
with a combination of environment variables and a CMake
toolchain file, while | kc | requires the appropriate target
triple and cpu architecture setting. The target triple set-
ting ensures that the Kronos compiler respects the hard-
ware floating point calling convention that is the system de-
fault on the Raspberry Pi. Further, LLVM would produce
software-emulated floating point code by default, which
runs too slowly to be useful. The correct processor setting,
targeting the Raspberry Pi Zero and above, allows our ex-
ternal to use the hardware vector and floating point unit,
improving performance by an order of magnitude.

The resulting cross-compiling agent was captured in a
Docker [20] image for the ease of redeployment.

4. CASE STUDIES

We tested the synthesizer with various known configura-
tions from literature [4]. A tambourine model Pd patch is
shown in Figure 4 and a Veneer patch in Figure 5. These
are the basis for our performance comparisons detailed in
section 5.

4.1 Tambourine

The Pd patch models the PhISEM algorithm outlined by
Cook [4]. In the Veneer patch, the nodes that participate
in impulse train generation are in orange, while the en-
velope generators and noise modulation are colored pink.
The blue nodes compute gain compensation based on the
probability of collisions.

In Veneer the impulse train can be generated efficiently
by comparing the output of a random generator ( Drift )
to a threshold value, and masking the overall system en-
ergy envelope with the result of that comparison (logical

'https://github.com/Pro/raspi-toolchain
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Figure 5. Particle percussion synthesis in Veneer

and, z). The | Lag | nodes represent one-pole filters, para-
metrized by the length of time between onset and 90% loss
in the exponential decay.

In this implementation, a resonator bank is derived from
a parameter matrix by a higher lever function, | Map |.

The audio signal from the particle model is captured by
the mapping function, as shown by the connection from
PHISEM  to |Resonator , in a visual analogy to a clo-
sure. This creates a fanout filter bank structure, subse-
quently mixed in the  Sum | node. Notably, the | seed
parameter determines the pseudo-random sequence, and
therefore the timing of any collision events relative to the
start of the synthesis run.

By hand-tweaking parameter values we were able to achieve
clear distinctions between three gestures types — hit, shake
and tilt — that can be the basis for interactions based on
percussion instruments such as hand-clap, sleigh bells, and
rain stick. Audio examples from these case studies are
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Figure 7. Excerpt from the “Mbiracas”, a vectored particle synthesizer

available online 2.

4.2 “Mbiracas”

As a new development, we wanted to explore the design
space of augmented particle-collision instruments afforded
by Kronoslang. Mbiracas is the first result; it features four
distinct particle models and resonators, mixed into a non-
linear waveshaper.

We can utilize the Kronos generic programming facilities
to accomplish such a setup easily; by seeding the particle
model with a vector rather than scalar, higher-dimensional
circuits are generated by the compiler, and we obtain four
distinct particle streams.

Automatic type derivation causes the resonator signal path
to upgrade to four channels as well; we can define distinct
resonators for each channel by supplying vectored param-
eters. An excerpt of the Veneer patch is shown in Figure 7.
‘We use a short index vector as the pseudo-random seed and
a harmonic series as the resonator frequency vector. The
patch is shown while interrogating these vector values.

4.3 Reverberation

Previously we showed how to vectorize an existing algo-
rithm to explore further sonic possibilities. This approach
is particularly well suited to reverberation; the feedback-
delay network (FDN) [21], an excellent method for syn-
thetic reverberation, is essentially a vectored comb filter.

We developed a FDN reverberator to exercise the capabil-
ities of Veneer and Kronos in programmatic circuit gener-
ation as well as test the performance of the generated code
on the Raspberry Pi.

We chose an 8-channel reverberator with additional dif-
fusion provided by allpass filters in series with each de-
lay line. The allpass filters provide a convenient means of
controlling the reflection density of the algorithm without
adjusting the delay line lengths.

2http://explodingart.com/icmc2020/audio_
examples/
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Figure 8. “Butterfly”, the recursive FDN matrix implementation in Ve-
neer

Our implementation uses a Hadamard feedback matrix.
This type of matrix yields a rapidly increasing reflection
as well as symmetry properties useful for optimization,
known as the Fast Walsh-Hadamard transform (FWT), re-

ducing the computational complexity from O(n?) to O(nlogn),

where n is the square of vector width. Figure 8 shows
the implementation of FWT in Veneer. The patch is poly-
morphic and recursive; if the argument is a vector, it is
recursively split in half until the terminating scalar case is
reached. The transform is completed by concatenating the
sum and difference of each recursive sub-transform, yield-
ing the characteristic Butterfly-shaped circuit.

5. RESULTS AND DISCUSSION

We compared the tambourine (shaker) models for both Pd
and Kronos implementations on a laptop computer, Rasp-
berry Pi 3, and the Raspberry Pi Zero W. Results are sum-
marised in Figure 9. The numbers on the bars indicate how
many instances of each instrument could theoretically run
in real time on each device. The heights of the bars are
normalized per device to help observe the relative perfor-
mance of each patch on devices of different CPU class.

We ran several instances in parallel to obtain more robust
CPU use numbers; 20 in case of the laptop computer, 4
for Raspberry Pi3 and 3 for the Raspberry Pi Zero. An
empty Pd patch was also measured as a baseline. We com-
puted the theoretical CPU load attributed to just our code
by subtracting the baseline. The displayed number is the
theoretical maximum number of real-time instances each
device could support assuming linear scaling and perfectly
efficient 100% CPU load. This is merely to contextualize
the numbers as in practice neither linear scaling or robust
operation under full CPU load is realistic.

The patch, Pd external and script files used for bench-
marking are available online 3 .

5.1 Benchmarks

On a Macbook laptop with an Intel i5 processor, our Kro-
nos implementation is ca. 3 times more efficient than our
native Pd patch. On the Rasperry Pi family, it is twice as
efficient. We believe the difference is due to the fact that
i5 can extract more instruction level parallelism from stat-
ically compiled code subjected to interprocedural optimi-
sation, and the fact that processors with shallow pipelines,
such as the Arm chips, suffer less from the unpredictable
dynamic dispatch of the native Pd patch.

3https://github.com/kronoslang/icmc2020_
benchmarks
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Figure 9. Summary of benchmark results

On the Mac, the vectored mbiracas runs slightly faster
than the shaker. On Raspberry Pi devices, the shaker is
slightly faster. The shaker has three resonators in series
compared to four parallel resonators on the mbiracas; Kro-
nos generates parallel vector code for mbiracas, and on the
modern i5 processor vector math runs fast enough for four
parallel filters to handily outperform three serial ones. The
Raspberry Pi has a weaker vector unit: parallel filters still
provide a boost, but to a lesser degree.

Understandably the reverb demands a much heavier load
than the particle models, but it is encouraging that this
vector-based algorithm with 8 channels of diffuse reverber-
ation can be implemented at all via the Pd externals. This
opens up new signal processing options to environments
where Kronos/Veneer do not run natively.

5.2 Comparison of Relevant Language Features

In the traditional division of musical programming tasks
into ugen, instrument and score [22], Kronos addresses the
former two, while Pure Data excels at the latter two. As the
present study deals with fairly low-level algorihmic details,
we would expect Kronos to have some advantages.

Notably, we were able to share an identical particle model
implementation between the scalar and vector cases. In
most cases, Pure data would require the programmer to ex-
plicitly duplicate subpatches to achieve vectored process-
ing. This useful abstraction in Kronos came with no loss
of efficiency: the generated code made full use of the hard-
ware vector units.

In addition, the metaprogramming capabilities of Kronos
were useful in implementing the reverberation algorithm,
especially the fast Walsh-Hadamard transform (see Sec-
tion 4.3). A similar implementation in Pure data would
have required a lot of manually specified nodes and con-
nections, absent a metaprogramming or scripting facility
outside of the core language.

On the other hand, the reach and expandability of Pure
data enabled us to easily deploy our implementation on a
variety of platforms without dealing with the intricacies of
hardware.

5.3 Future work

Whilst the development of the Pi-Shaker and Kronos-Pd
workflow open up new opportunities for gesturally con-
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trolled hand held instruments, clearly more rigorous test-
ing and exploration of the possibilities opened up in this
project are required and we look forward to undertaking
that work. The Veneer compiling pipeline could also be
extended to other platforms such as to Arduino-class micro
controllers, especially those using the Arm M4 or higher
processors with dedicated floating point hardware.

6. CONCLUSIONS

In the paper we have presented the Pi-Shaker project that
explores the application of efficient digital signal process-
ing techniques for interactive music applications. Notably,
Kronos and Veneer were successfully used to extend the
signal processing capabilities of Pure Data without aban-
doning the visual patching metaphor. We outlined imple-
mentations of physically informed models of sound syn-
thesis and sound spatialisation using a novel workflow fea-
turing Kronos and Pure Data. These were shown to be
efficient and respond effectively in real time to a range of
performative gestures. As such, we demonstrate the poten-
tial of this platform as a basis for future development of
handheld digital instruments.
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