
Kronos
Reimagining Musical Signal Processing

Vesa Norilo

March 14, 2016





P R E FA C E

thanks and acknowledgements
First of all, I wish to thank my supervisors; Dr. Kalev Tiits, Dr. Marcus Castrén and Dr. Lauri
Savioja, for guidance and some necessary goading.

Secondly; this project would never have materialized without the benign influence of Dr Mikael
Laurson and Dr Mika Kuuskankare. I learned most of my research skills working as a research
assistant in the PWGL project, which I had the good fortune to join at a relatively early age. Very
few get such a head start.

Most importantly I want to thank my family, Lotta and Roi, for their love, support and patience.
Many thanks to Roi’s grandparents as well, who have made it possible for us to juggle an improb-
able set of props: freelance musician careers, album productions, trips around the world, raising a
baby and a couple of theses on the side.

This thesis is typeset in LATEX with the Ars Classica stylesheet generously shared by Lorenzo
Pantieri.

the applied studies program portfolio
This report is a part of the portfolio required for the Applied Studies Program for the degree of
Doctor of Music. It consists of an introductory essay, supporting appendices and six internationally
peer reviewed articles.

The portfolio comprises of this report and a software package, Kronos. Kronos is a programming
language development environment designed for musical signal processing. The contributions of
the package include the specification and implementation of a compiler for this language.

Kronos is intended for musicians and music technologists. It aims to facilitate creation of sig-
nal processors and digital instruments for use in the musical context. It addresses the research
questions that arose during the development of PWGLSynth, the synthesis component of PWGL, an
environment on which the author collaborated with Dr Mikael Laurson and Dr Mika Kuuskankare.

Kronos is available in source and binary form at the following address: https://bitbucket.org/
vnorilo/k3

iii

https://bitbucket.org/vnorilo/k3
https://bitbucket.org/vnorilo/k3




C O N T E N T S

I Introductory Essay 3

1 background 5

1.1 Signal Processing for Music: the Motivation . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Artistic Creativity and Programming . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Ideas From Prototype to Product . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Empowering Domain Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 State of Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The Unit Generator Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Aspects of Programming Language Theory . . . . . . . . . . . . . . . . . . . . 8

1.2.3 The Multirate Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 About the Kronos Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Academic Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Contents of This Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 methodology 15

2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Reactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Generics and Metaprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Simple Fω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Reactive Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Source Language and Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Internal Representation of Programs . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.4 Compilation Transform Passes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.5 LLVM Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 discussion 29

3.1 The Impact of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Supplementary Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Comparison to Object Oriented Programming . . . . . . . . . . . . . . . . . . 33

3.1.3 Alternate Implementation Strategies . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 conclusion 39

references 41

v



vi Contents

II Publications 45

p1 kronos: a declarative metaprogramming language for digital signal processing 49

p2 a unified model for audio and control signals in pwglsynth 69

p3 introducing kronos – a novel approach to signal processing languages 75

p4 designing synthetic reverberators in kronos 85

p5 kronos vst – the programmable effect plugin 91

p6 recent developments in the kronos programming language 97

III Appendices 105

a language reference 107

a.1 Syntax Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

a.1.1 Identifiers and Reserved Words . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

a.1.2 Constants and Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

a.1.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

a.1.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

a.1.5 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

a.1.6 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

a.1.7 Reactive Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

a.2 Library Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

b tutorial 123

b.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

b.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

b.2.1 Higher Order Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

b.2.2 Signals and Reactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

b.2.3 Type-driven Metaprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

b.2.4 Domain Specific Language for Block Composition . . . . . . . . . . . . . . . . 137

b.3 Using the Compiler Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

b.3.1 kc: The Static Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

b.3.2 kpipe: The Soundfile Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

b.3.3 kseq: The JIT Sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

b.3.4 krepl: Interactive Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . 142

c life cycle of a kronos program 145

c.1 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

c.2 Generic Syntax Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

c.3 Typed Syntax Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

c.4 Reactive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

c.5 Side Effect Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

c.6 LLVM Intermediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

c.7 LLVM Optimized x64 Machine Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



L I S T O F P U B L I C AT I O N S

This report consist of an introductory essay, supporting appendices, and the following six articles
referred to as P1–P6.

P1 Vesa Norilo. Kronos: A Declarative Metaprogramming Language for Digital Signal Process-
ing. Computer Music Journal, 39(4), 2015

P2 Vesa Norilo and Mikael Laurson. A Unified Model for Audio and Control Signals in PWGLSynth.
In Proceedings of the International Computer Music Conference, Belfast, 2008

P3 Vesa Norilo. Introducing Kronos - A Novel Approach to Signal Processing Languages. In
Frank Neumann and Victor Lazzarini, editors, Proceedings of the Linux Audio Conference, pages
9–16, Maynooth, 2011. NUIM

P4 Vesa Norilo. Designing Synthetic Reverberators in Kronos. In Proceedings of the International
Computer Music Conference, pages 96–99, Huddersfield, 2011

P5 Digital Audio Effects. Kronos Vst – the Programmable Effect Plugin. In Proceedings of the
International Conference on Digital Audio Effects, Maynooth, 2013

P6 Vesa Norilo. Recent Developments in the Kronos Programming Language. In Proceedings of
the International Computer Music Conference, Perth, 2013

1





Part I

Introductory Essay

3





1 B A C KG R O U N D

1.1 signal processing for music: the motivation
Musical signal processing is an avenue of creative expression as well as a realm for commercial
innovation. Composers require unheard digital instruments for creative purposes, sound engineers
apply novel algorithms to further the recording arts, musicologists leverage exotic mathematics
for sophisticated music information retrieval, while designers and engineers contribute exciting
products to the vibrant scene of amateurs and autodidacts. Signal processor design is luthiery in
the digital age.

Design and realization of signal processors by musicians is a topic that has attracted a lot of
research since the seminal MUSIC III [7]. The activity in this field suggests that the related questions
are not satisfactorily resolved. A survey of the state of art is given in Section 1.2. In broad terms,
this study presents the evolution of musical signal processing as gradual application of ideas from
computer science into a programming metaphor, the unit generator graph, a digital representation of
signal flow in a modular synthesis system. This process is still in ongoing, and a significant body
of work in general computer science awaits exploration.

Three research projects are outstandingly influential to this study. SuperCollider by McCartney
[8] applies the object oriented programming paradigm to musical programming. It sets a prece-
dent in demonstrating that elevating the level of abstraction in a programming language doesn’t
necessarily make it more difficult to learn, but certainly facilitates productivity. Faust by Orlaley et
al. [9] applies functional programming to low level signal processing, accomplishing this transfor-
mative combination by a custom-developed compiler stack. Lastly, the PWGL project, in which the
author has collaborated with Laurson and Kuuskankare [10], during which many of the research
problems addressed by this study originally arose.

The traditional wisdom states that high performance real time code needs to be written in a low
level idiom with a sophisticated optimizing compiler, such as C++ [11]. Improved processing power
hasn’t changed this: the demand for higher resolution, more intesive algorithms and increasing
polyphony and complexity has kept slow, high level languages out of the equation. On the other
hand, learning industrial languages such as C is not an enticing proposition for domain experts,
such as composers and musicians. The rest of this section presents the rationale and inspiration for
designing a signal processing language designed explicitly for them.

1.1.1 Artistic Creativity and Programming

Technical and artistic creativity are widely regarded as separate, if not indeed opposite, qualities.
In an extreme, technical engineering can be seen as an optimization process guided by quantifiable
utility functions. The act of artistic creation is often discussed in more mystical, ephemeral terms.
The object of this study is not to deliberate on this dichotomy. However, the practice of instrument
building, including mechanical, electronic and digital, certainly contains aspects of both the former
and a latter stereotype. The emergence of digital musicianship [12] involves musicians building

5



6 background

their instruments and developing performative virtuosity in realms like mathematics and computer
programming.

A similar trend is observed by Candy in academic research conducted by artists [13, p. 38]; tool
building and the development of new technology can both enable and result from artistic research.

Thus, a re-examination of programming tools related to artistic creation could be fruitful. This
is programming in the realm of vague or unknown utility functions. Key aspects of the workflow
are rapid feedback and iterative development. Regardless of whether the act of programming is
performative in and of itself, the interaction between the machine and programmer tends to be
conversational [14]. Algorithm development and refinement happen in quickly alterating modify–
evaluate cycles. The evaluation is typically perceptual; in the case of music, the code must be heard
to be assessed. This is a marked contrast to the traditional enterprise software development model
of specification, implementation and testing, although similarities to newer methods are apparent.

1.1.2 Ideas From Prototype to Product

Programming languages have diverse goals. The most common such goals include run time and
compile time efficiency, correctness and safety, developer productivity and comfort. Sometimes
there is synergy between a number of these goals, sometimes they conflict. Efficiency often requires
sacrifices in the other categories. Safety can run counter to productivity and efficiency.

Prototypes are often made with tools that are less concerned with efficiency, correctness and
safety, and prioritize quick results and effortless programming. Once the need for rapid changes
and iteration has passed, final products can be finalized with more work-intensive methods and
languages that result in safe, efficient and polished products.

Ideally, the same tools should be fit for both purposes. This is especially the case in musical
signal processing, where the act of programming or prototyping is more or less continual, even
performative. The signal processor in development must still respond adequately; offer high real
time performance, never crash or run out of memory. In a sense, a prototype must share many
qualities of a finalized product.

Such a combination of features is more feasible if the language is narrowly targeted. Complex
concerns such as safe yet efficient dynamic heap management are central to general purpose lan-
guage design. A domain language can take a simple stance: in signal processing, dynamic memory
semantics should not be required at all. Similarly, if a language enforces a strictly delimited pro-
gramming model, safety, efficiency and ease of development can all be provided, as the programs
stay within predefined constraints. As more complicated requirements, such as parallel execution
of programs, arise, strict programming models become ever more important.

The design problem then becomes one of reduction. What can be removed from a programming
language in order to make it ideally suited for automated optimizers, safe memory semantics and
seemingly typeless source notation? Does reduction also enable something new to emerge? Per-
haps a combination of constructs and paradigms that was prohibitively inefficient in more broadly
specified languages, can now achieve transformatively high performance via compiler optimiza-
tion.

1.1.3 Empowering Domain Experts

The value of a code fragment written for artistic purposes can be perceptual and hard to quantify.
It is often hard to communicate as well. Collaboration between expert programmers and expert
musicians tends to be difficult, especially when new ground is to be broken.

Many musicians opt to build their own digital instruments. Likewise, effects processor design
requires the sensibilities of an experienced live sound or studio engineer. Such activity is highly



1.2 state of art 7

cross-disciplinary by default. One aim of a domain specific programming environment is to lower
the technical barrier to entry. This enables a larger portion of musicians and music technologists to
better express their algorithmic sound ideas without the assistance of an expert programmer.

The author of this report suspects that programming tools that promote artistic creativity in
programming, more specifically those that employ conversational programming [14], are more
suitable and easier to adopt for musicians. A proper scientific examination of this hypothesis is
beyond the scope of the present study, but it is nevertheless acknowledged as a part its background
motivation.

One can further speculate that such empowerment of domain experts would lead to innovation
and furthering of the state of art in musical signal processing. The present study is an attempt to
fullfill some of the technical prerequisites to such experiments.

1.2 state of art
This section presents a brief overview of the evolution and state of art in musical signal processing.
A more technically detailed discussion is given in P1 .

Many of the aspirations for a musical programming language are for a combination of features
from multiple existing languages or environments. Some of them follow from the fact that musical
domain specific languages tend to be used by non-programmers. The domain can tolerate a loss of
generality if it is accompanied by an improvement in the workflow of accomplishing common mu-
sical tasks. A representative example of such a tradeoff is the traditional unit generator paradigm.
This paradigm is exceedingly successful in the field, despite common implementations allowing
next to no abstraction and only simple composition of nodes that are prebuilt and supplied with
the environment. Simplicity can be a strength; the further one taps into computer science, the
greater care must be taken to design for music practitioners; complicated abstraction must be pre-
sented in a clear and approachable manner.

1.2.1 The Unit Generator Graph

The unit generator graph is the most influential programming model in the history of musical sig-
nal processing. The MUSICn family by Mathews [15, p. 187] is widely considered [16] to have
estabilished this paradigm, which has since appeared in the majority of musical programming
environments. Csound [17] is the direct contemporary descendant of the MUSIC series.

Unit generators or ugens fulfill a dual role of both the programming model and the implementa-
tion strategy for many of these environments. Ugens are defined as primitive operations in terms of
signal input and output. User programs are composed by interconnecting the inputs and outputs
of simple ugens. The actual code for the input–output processing itself is typically a “black box”,
provided as native code component, out of reach of the programmer. The opaqueness of such
environments prevents programmers from studying the inner workings of the modules they are
using.

A visual representation of an ugen connection graph is a dataflow diagram. Since the primary
method of programming is composing and connecting ugens, a visual programming surface is an
easy fit. Max [18] and Pure Data [19] are examples of graphical ugen languages.

Ugens also provide a model of program composition. New ugens can be defined in terms of the
existing ones, by describing their input–output processing as a ugen graph. In theory, this method
of composition scales from primitive ugens to simple signal processors built of them, and finally
complicated systems built from the simple processors. Csound [17] provides the ability of defining
opcodes – the Csound term for ugens – built from other opcodes, on multiple levels. Pure Data



8 background

does less to encourage such composition, but provides a mechanism to hide ugen subgraphs behind
abstract graph nodes.

1.2.2 Aspects of Programming Language Theory

Unit generators can be compared to the basic compositional elements in other programming
paradigms. In MUSIC III [7] and its descendants, ugens and instruments correspond to classes
in object oriented programming while ugen instances correspond to objects [20].

The Pure Data [19] model corresponds closely to the object model in the Smalltalk tradition [21],
where objects send messages to each other. In PD, node inlets can be considered to be selectors,
with the connector cables describing the messaging flow.

The more advanced aspects of object orientation are out of reach of the visual representation.
Delegation, composition and subtyping are not generally achievable in Pure Data [19], although
the Odot project [22] provides interesting, if limited, extensions.

SuperCollider [8] takes the object oriented approach further. A high level object language with
concepts like higher order functions and dynamic objects is used to construct a ugen graph for
signal processing. The SuperCollider synthesis graph is interpreted; composed from relatively
large hermetic, built-in code blocks, as directed by the front end program. This method is effective,
but forces the back end ugens to be considerably less flexible than the front end script idiom due
to more stringent performance targets. The related technical details are further explained in P1 .

To transcend the limitations of ugen interpreters, compilation techniques can be employed. Faust
[23] is a prominent example of a bespoke compiler system for musical signal processing. Faust
provides first class functions and caters for some functional programming techniques, yet is capable
of operating on the sample level, with unit delay recursion. Such a combination is made possible by
employing code transformation and optimization passes from source form to natively executable
machine code.

1.2.3 The Multirate Problem

A staple of signal processing efficiency is the management of signal update rates. Typical systems,
again following the MUSICn tradition, specifically MUSIC 11 [15, p. 187], are divided into audio
and control sections. The former always operate at audible bandwidths, while the latter may be
roughly as slow as the human event resolution. The required update rates for these sections may
differ by an order of magnitude, which has a significant impact on computational efficiency.

Most systems maintain the distinction between control and audio rate. Some compute everything
at the audio rate, which is hardly efficient. In SuperCollider [8], most ugens can be instantiated at
either rate, while Pure Data [19] divides the ugens to distinct groups that deal with either control
or audio signals. Further, Pure Data represents control data as a series of discrete non-synchronous
events that do not coincide with a regular update clock. Some recent systems like multirate Faust
[24] and Csound 6 provide the option for several different control rates.

Some signals are endemically composed of discrete events, such as MIDI or OSC [25] messages or
user interface interaction. A complicated system might require a large number of update schemes:
audio, fine control, coarse control, MIDI events and user interface events.

Most systems deal with audio and control rates that are only globally adjustable. The signal
rate boundaries also tend to add to the verbosity and complexity of source code. An interesting
alternative solution to the multirate problem is proposed by Wang [26]; the signal processor is
defined as a combination of a ugen graph and a control script that are co-operatively scheduled,
with the control script yielding time explicitly for a well defined sleep period. Thus, the control



1.3 research problem 9

script with its flexible processing intervals replaces the control section of the signal processing
system. However, the dichotomy between audio and control remains.

1.3 research problem
The research problem in this study is formulated as a design for a programming language and run
time for musical signal processing. Firstly, the survey of the state of art is examined to identify
open problems in the current practice, which the language aims to address. Secondly, the language
design is geared towards enabling technological innovation by domain experts, as motivated in
Section 1.1.

The hypothesis is that theory from computer science can be deployed to accomplish the stated
goals. Further, by specifying the language as compiled rather than interpreted, underutilized
programming paradigms and models can become viable. Compilation enables more significant
program transformations to take place, allowing more design freedom to formulate the mapping
from a desirable source form to efficient and satisfactory machine code.

To think that a project of such a limited scope as this one could outperform world class pro-
gramming languages and compilers in the general case is somewhat irrational. The design criteria
must therefore be specified as a novel set of tradeoffs that result from the specific characteristics of
musical signal processing as a narrowly defined domain.

1.3.1 Open Questions

An expert programmer would likely find most musical programming environments unproductive.
Staples of general purpose languages such as code reuse, modularity and abstraction are less
developed. Many visual environments struggle to represent basic constructs like loops, leading
users to duplicate code manually. There are a number of factors that work against the adoption of
helpful abstraction in these environments.

Firstly, the common ugen interpretation scheme favours large, monolithic ugens that spend as
much processor time in their inner processing loop as possible, per dispatch. This is for efficiency
reasons. The inner loops are usually opaque to the ugen interpreter, having been built in a more
capable programming language. The technical limitations derail ugen design from simple, modular
components to large, monolithic ones. The promise of the ugen graph as a compositional model is
not realized.

Secondly, the potential of visual programming is often not exploited fully. There is an obvious
correspondence between functional data flow prorams and the graphical signal flow diagram. Yet,
staples of functional programming, such as polymorphism and higher order functions are largely
absent from the existing visual programming surfaces. Perhaps these programming techniques
are considered too advanced to incorporate in a domain language for non-programmers, and the
omission is by design. However, the theory of functional languages offers a lot of latent synergy
for visual programming.

Thirdly, the separation of signal rates should be re-examined. Manual partition of algorithms
into distinct update schemes often feels like a premature manual optimization. If this optimization
could be delegated to the compiler, the ugen vocabulary could conceivably be further reduced by
unifying all the clock regimens. The solutions to these open problems are subsequently enumerated
as three main topics that this study addresses.

1. Unified Signal Model

The multirate problem is resolved from user perspective by applying unified semantics for all
kinds of signals, ranging from user interface events to midi messages as well as control and



10 background

audio signals. The technical solution is a compiler capable of producing the typical multirate
optimizations automatically, without user guidance.

2. Composable and Abstractive Ugens

The target language offers features that are a superset of a typical ugen interpreter. Sim-
ilar programming models are available, but in addition, the focus is on ugen composition
rather than a large ugen library. Algorithmic routing is provided for increased programmer
productivity.

3. Visual Programming

The language is likely more readily adapted by domain experts if a visual programming sur-
face is available. The language should have a syntax that is minimal enough for successful
visualization, and the program semantics should be naturally clear in visual form. Neverthe-
less, expressive abstraction should be supported.

The theoretical and practical methods for addressing these problems are discussed in Chapter 2,
Methodology.

1.4 about the kronos project
The rest of this chapter gives an overview of the activities undertaken during the Kronos project,
related publications, the software package and the author’s contribution to these.

The result of this project is a portfolio that includes the Kronos Compiler software suite for
Windows and Mac OS X operating systems; this report, including six peer-reviewed articles; and
supporting appendices that demonstrate aspects of the project via examples and learning materials.

The Kronos Compiler is programmed in C++ [11] and built on the LLVM [27] open source
compiler infrastructure. The software architecture consists of the following modules:

1. Parser

2. Code repository

3. Syntax graph representation

4. Syntax graph transformation

5. Reactive analysis and factorization

6. Idiom translator from functional to imperative

7. LLVM IR emitter

8. LLVM compiler

Items 1–7 are exclusively developed by the author of this report. Modules 4–6 represent the
central contributions of this study to the field, as detailed in Chapter 2. Item 8 is a large scale open
source development, headed by Lattner et al [27].



1.4 about the kronos project 11

1.4.1 Academic Activities

An extensive publishing effort has been a part of the Kronos project. 3 journal articles and 12

conference papers have been published in the extended context of study. A number of these are
collaborations with Mikael Laurson and Mika Kuuskankare. The author of this report is the first
author of one journal article and 10 conference articles. The publications are listed below:

International Scientific Journals

1. Mikael Laurson, Vesa Norilo, and Mika Kuuskankare. PWGLSynth: A Visual Synthesis Lan-
guage for Virtual Instrument Design and Control. Computer Music Journal, 29(3):29–41, 2005

2. Mikael Laurson, Mika Kuuskankare, and Vesa Norilo. An Overview of PWGL, a Visual
Programming Environment for Music. Computer Music Journal, 33(1):19–31, 2009

3. Vesa Norilo. Kronos: A Declarative Metaprogramming Language for Digital Signal Process-
ing. Computer Music Journal, 39(4), 2015

International Conference Articles

1. Vesa Norilo and Mikael Laurson. A Unified Model for Audio and Control Signals in PWGLSynth.
In Proceedings of the International Computer Music Conference, Belfast, 2008

2. Vesa Norilo and Mikael Laurson. Kronos - a vectorizing compiler for music dsp. In Proc.
Digital Audio Effects (DAFx-10), pages 180–183, Lago di Como, 2009

3. Vesa Norilo and Mikael Laurson. A method of generic programming for high performance
{DSP}. In Proc. Digital Audio Effects (DAFx-10), pages 65–68, Graz, 2010

4. Vesa Norilo. Designing Synthetic Reverberators in Kronos. In Proceedings of the International
Computer Music Conference, pages 96–99, Huddersfield, 2011

5. Vesa Norilo. A Grammar for Analyzing and Optimizing Audio Graphs. In Geoffroy Peeters,
editor, Proceedings of International Conference on Digital Audio Effects, number 1, pages 217–220,
Paris, 2011. IRCAM

6. Vesa Norilo. Introducing Kronos - A Novel Approach to Signal Processing Languages. In
Frank Neumann and Victor Lazzarini, editors, Proceedings of the Linux Audio Conference, pages
9–16, Maynooth, 2011. NUIM

7. V Norilo. Visualization of Signals and Algorithms in Kronos. In Proceedings of the International
Conference on Digital . . . , pages 15–18, York, 2012

8. Vesa Norilo. Kronos as a Visual Development Tool for Mobile Applications. In Proceedings of
the International Computer Music Conference, pages 144–147, Ljubljana, 2012

9. Mika Kuuskankare and Vesa Norilo. Rhythm reading exercises with PWGL. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), volume 8095 LNCS, pages 165–177, Cyprus, 2013

10. Digital Audio Effects. Kronos Vst – the Programmable Effect Plugin. In Proceedings of the
International Conference on Digital Audio Effects, Maynooth, 2013



12 background

11. Josue Moreno and Vesa Norilo. A Type-based Approach to Generative Parameter Mapping.
In Proceedings of the International Computer Music Conference, pages 467–470, Perth, 2013

12. Vesa Norilo. Recent Developments in the Kronos Programming Language. In Proceedings of
the International Computer Music Conference, Perth, 2013

Academic Presentations

Aspects of this study have been the presented by the author in various academic contexts. These
presentations are listed below.

conference talks

1. 2009, Talk at International Computer Music Conference, Belfast

2. 2011, Invited speaker at Linux Audio Conference, Maynooth

3. 2012, Talk at International Computer Music Conference, Ljubljana

4. 2013, Talk at International Computer Music Conference, Perth

5. 2014, Talk at International Conference on Digital Audio Effects, Maynooth

conference poster presentations

1. 2010, International Conference on Digital Audio Effects, Graz

2. 2011, International Conference on Digital Audio Effects, Paris

3. 2011, International Computer Music Conference, Huddersfield

4. 2012, International Conference on Digital Audio Effects, York

other talks

1. 2011, Colloquium at IRCAM, Paris

2. 2012, PRISMA meeting, Arc et Senans

3. 2013, Colloquium at CCRMA, Stanford University

4. 2015, Workshop at National University of Ireland, Maynooth

1.4.2 Contents of This Report

The scope of this report is the design, implementation and applications of the Kronos Compiler.
It comprises of three parts: Part I, this introductory essay. Part II, the peer reviewed publications,
which constitute the majority of this work. Part III, appendices, where the principles put forward
in this essay and the publications are elaborated less rigorously, supported by examples. The
Introductory essay refers to the publications and appendices in order to better define or explain a
concept. A summary of the peer reviewed publications is given in Section II.

The structure of this essay is as follows. This chapter, Background, defined the research problem,
motivated the study and provided an overview of the project and the related activities. Chapter 2,
Methodology, explains the methodology of the study. The chapter is divided in two parts, theory



1.4 about the kronos project 13

and implementation. The Theory, in Section 2.1, summarizes and collects the theoretical framework
this study is based on as well as the novel inventions. The Implementation, in Section 2.2, deals
with the engineering aspect of writing a compiler, discussing implementation strategies that are
too particular to the software in this portfolio to be otherwise published. This section is key for
readers who are interested in looking at the source code of the Kronos Compiler. The results of
this study in relation to the state of art are discussed in Chapter 3, Discussion, followed by the
Conclusion of this report in Chapter 4.





2 M E T H O D O LO GY

2.1 theory
The theoretical framework of the Kronos language and compiler are discussed in this section. Re-
search problems relevant to furthering the state of art in musical signal processing ar identified,
and paradigms from the field of general computer science are proposed in order to solve them.

An overview of the three main problems addressed by this study are summarized in Table
1. Firstly, the distinction between audio and control rate, events and signal streams, should be
replaced by a Unified signal model. Secondly, the requisite vocabulary of unit generator languages
should be reduced, replaced by adaptable and Composable ugens. Thirdly, the language must be
adaptable for Visual programming, as it is preferred by many domain experts. All of these should
be attainable with high performance real time characteristics. This translates to the generated code
executing in deterministic time, reasonably close to the theoretical machine limit.

The main contributions of this study are presented in Sections 2.1.4 and 2.1.5, discussing the
unique type system approach, Simple Fω, and the application of Reactive Factorization to solve the
multirate problem by the application of theory of reactive systems. For an example-driven look at
the compiler pipeline, please refer to Appendix C.

2.1.1 Functional Programming

Functional programming is a programming paradigm based on the ideas of lambda calculus [36]
[37]. A key feature of this paradigm is the immutability of variables. In other words, variables are
constant for the entirety of their lifetime. In addition, functions are treated as first class values, so
they can be constructed ad hoc, stored in variables and passed to other functions.

Two characteristics of functional programming stand out to make it eminently suitable for a
signal processing domain language. Kronos is designed to be applied in the context of visual pro-
gramming: in this domain, data flow is naturally represented. The functional paradigm exhibits data
flow programming in its pure form. Secondly, high performance is required of a signal processing
system, as discussed in Section 1.3. In a language designed for non-professional programmers,
automated rather than manual code optimization is more feasible. Functional programming pro-
vides a strong theoretical framework for implementing optimizing compilers. These two aspects
are subsequently elaborated.

Table 1: Research Problems and Solutions

Problem Proposed solution
Unified signal model Discrete reactive systems
Composable ugens Functional, generic
Visual programming Functional, data flow

15



16 methodology

Data Flow and Visuality

Functional programs focus on the data flow; the composition of functions. Much of the composi-
tion apparatus is exposed to the programmer, as functions are first class values. This means that
programs can assign functions to variables, pass them as parameters to other functions, combine
and apply them. New functions can be constructed ad hoc.

The difference between functional and the more widely used imperative idiom is best demon-
strated via examples. Consider the Listing 1. It shows a routine in C++, written in a typical
imperative fashion. First, variables are declared. Then, a loop body is iterated until a terminating
condition occurs. Inside the loop, variables from the enclosing scope are mutated to accomplish
the final result, which is returned with an explicit control transfer keyword, return .

A counterexample is given in Clojure, written without variables or assignment and shown in
Listing 2. Instead, the iterative behavior is modeled by a recursive function. This example is for
demonstration purposes: it doesn’t reflect the best practices due to not being tail recursive.

Listing 1: Function to compute the sum of an array in C++

int sum_vector(const std::vector<int>& values) {

int i = 0, sum = 0;

for(i; i < values.size(); ++i) {

sum += values[i];

}

return sum;

}

Listing 2: Function to compute the sum of an array in Clojure

(defn sum-array [values]

(if (empty? values) 0

(+ (first values)

(sum-array (rest values)))))

Contrasting the visual depiction of the abstract syntax trees for the algorithms above is instruc-
tive. The imperative version, shown in Figure 1, is actually harder to follow when translated
from textual to visual form. The visualization de-emphasizes the critically important chronological
sequence of instructions.

The functional version, shown in Figure 2, exhibits the data flow of the algorithm. The algo-
rithm is stateless and timeless, topological rather than chronological. The graph captures everything
essential about the algorithm well.

The difficulty in understanding the imperative syntax graph results from implicit data flows.
Some syntax nodes such as assignment could mutate state upstream from them, implicitly affect-
ing their sibling nodes. This makes the ordering of siblings significant, as the sequence of state
mutation defines the behavior of the program. With immutable data, the processing order of sib-
ling nodes is never significant.

Imperative programs resemble recipes or the rules of a board game: they are formulated as a
sequence of instructions and flow control. Functional programs are like mathematical formulas or
maps: stateless descriptions of how things will happen. This is why graphical syntax trees and
visual programming are well suited to represent them.

Please refer to P3 for a discussion on functional replacements for imperative programming
staples.



2.1 theory 17

=

int sum_vector(values)

= <

for

++ []

+=

.size

i

0sum

return

values

Figure 1: Abstract syntax tree of a C++ function

Efficient High Level Code

High performance is one of the key requisites in a signal processing environment, as discussed
in Section 1.3. There are two main methods of designing an efficient language. The language
can reach down, “to the metal”, to let programmers influence the exact composition of machine
instructions that comprise the final program code. Expert programmers can craft routines that are
tightly matched with the target machine architecture.

On the other hand, a language can be designed for optimizing compilers. In this case, the
compiler deploys algorithms that translate the user code to an efficient machine representation –
automating the work of an expert programmer.

The latter option makes sense in a language aimed towards domain experts such as musicians.
The Kronos language is designed with very restrictive semantics and a simple memory model.
These characteristics support the implementation of an optimizing compiler, as more assumptions
can be made about the semantics of the code.

As a result, the machine code emitted by the Kronos compiler may be quite different from the
program source. Much of the apparent high level abstraction and data propagation can be elided
away. The functional programming model provides the following optimization advantages [36]:

1. Lambda calculus, the foundational principle of functional programming, enables mathemat-
ical manipulation and reasoning about the syntax tree. Proofs and isomorphic transforma-
tions that increase efficiency are easier to come by.

2. Referential transparency ensures that expressions can always be replaced with their values
without changing program behavior. While trivially true in lambda calculus, this property is
hard to prove for imperative program fragments.



18 methodology

sum-array

+

if

empty?

0

defn sum-array

values

restfirst

Figure 2: Abstract syntax tree of a Clojure function

3. Immutability of data guarantees that the compiler is free to use value or reference semantics
at will, which can be utilized to avoid copying memory. Implicit data flows do not exist,
making program analysis easier.

There is an inherent risk of a leaky abstraction in a design like the one described above. Leaky
abstraction means that the programmer must still know the efficient low level instruction composi-
tion, and tweak the source program in order to achieve that composition through the optimization
pipeline. This risk is reduced in a language that does not aim for general purpose programming,
as it can be designed to exclude source forms that interact badly with the optimizer.

2.1.2 Reactive Systems

According to Van Roy’s definition [38], a discrete reactive system is one that responds to input
events by producing output events, in such a way that the sequence and timing of the input events
uniquely determines the sequence and timing of the output events.

Discrete sequences of events can be viewed as time–value pairs, which constitute a discrete
time series. Pure functions [39] operating on such serii can be seen as a trivial subset of discrete
reactive systems. The output of a pure function can only change when one or several inputs change.
Therefore, the output sequence contains, at most, one event for each input event, synchronously in
time.

Both sample streams and event queues can be modeled using time–value pairs, although in
the traditional interpreted context, dispatching each audio sample as a timestamped event would
likely impose crippling computational overhead. The Kronos language is designed around this



2.1 theory 19

unified signal model, and the reactive factorization technology, described in detail in Section 2.1.5,
is designed to eliminate dispatch overhead in the case of high frequency sampled streams.

In addition to pure functions, Kronos offers operators that represent the state of the signal pro-
cessor. These include unit delays and ring buffers, which are built from more general state arrays
with read and write access. Such operators are not pure, as they have an implicit memory. However,
the language semantics maintain functional purity from the perspective of the programmer; any
mutation of state is only permitted after all its other uses are completed. This allows for referential
transparency for the stateful operators, as the state they refer to remains immutable during all
computation, to be assigned to only afterwards. A similar method of describing stateful operations
in a functional context was adopted earlier in the Faust language [9].

These semantics maintain the discrete reactive model, and the total system output remains a
pure function of current and past inputs. The implicit state is automatically reified by the compiler
in strict accordance with the semantics previously defined. This technique is related to the concept
of code weaving in aspect oriented programming [40].

Finally, operators that explicitly control the reactive clock propagation are offered. It is possible
to impose the update rate of one signal onto another, to conditionally inhibit clock propagation and
to specify clock priorities to automatically make certain signals dominate others. For a summary
of the reactive operators currently in the language, please refer to Section A.1.7.

This operator set is sufficient to cover a wide range of signal processors ranging from artificial
reverb to voice allocating synthesizers and MIDI filters, all with an efficient, unified signal model,
corresponding to the principle of discrete reactive systems. Example applications are shown pri-
marily in P3 and P4 .

2.1.3 Generics and Metaprogramming

Type systems are key to generating efficient code. In addition, they enable programming errors to
be caught early. However, to beginners, type notation in the source code can seem confusing and
redundant.

The Kronos language is designed to require no type notation in the source form. However, the
executed program is fully statically typed, to ensure fast, deterministic execution. To accomplish
this, a technique inspired by the C++ template metacompiler [41] is utilized. The source program is
typeless or generic. Upon application, a typed or specialized version is generated based on some root
types. In the context of signal processing, these root types are the external inputs to the system.

In contrast to more sophisticated automated type systems, such as those in the broad ML family
[42], Kronos opts for forward type derivation instead of inference. A similar mechanism is used for
the C++11 auto keyword [11]. Such derivation is very simple, and never requires any manual type
annotations, always resulting in unamibigous static typing. It doesn’t scale well for a large scale
general purpose language, as the type derivation essentially represents a separate, dynamically
typed computation pass over the entire program. Type-specialized functions are generated or reified
at this time, and the number of distinct reifications can grow quickly. However, these drawbacks
matter less in the context of signal processing kernels, and offer great benefits for code optimization.

Ad-hoc Polymorphism and Pattern Matching

One of the fundamental contributions of this study to the field is the furthering of ugen parametriza-
tion. This idea can be traced back to SuperCollider [8], which offers a channel expansion facility:
when a ugen receives vectors of parameters, it becomes a vectorized ugen. In terms of program-
ming language theory, this can be seen as a form of polymorphism; the exact behavior of a ugen is
dependant on the type of its parameters.



20 methodology

Kronos aims to generalize and further promote such type parametrization. Polymorphic func-
tions serve the role of ugens. The Kronos type system supports data types that map to the ele-
mentary hardware types, such as 32- and 64-bit floating point and integer scalars. In addition,
packed vectors are supported. Constructs such as strings, nil and numeric constants are provided
as entities lifted into the type system for metaprogramming purposes. As such, the strings "Hello"

and "Hi" are distinct types. They never constitute a part of a signal flow, but can influence type
derivation and ugen reification. Tags with unique identity are provided as well.

Algebraic types can be composed of the aforementioned primitive types with the typical com-
position operators Pair , First and Rest . The parser provides syntactic sugar for structuring and
destructuring types from chains of pairs (see A.1.6). In addition, a nominal type can be declared
by assigning a unique tag to it. The tag can be used to provide semantic information, such as dis-
tinguishing between a complex number and a stereophonic sample, both of which are structurally
identical.

Polymorphic unit generators can be written for classes of argument types. Type constraints are
derived from the destructuring that a function performs, including nominal type tags. In addition,
functions inherit constraints from any functions they themselves call. Overload resolution is per-
formed during type derivation, by accepting the first constraint-satisfying form of each function
in reverse source order. Polymorphic ugens can operate on types that share semantics rather than
structure. This is known as ad-hoc polymorphism according to Cardelli and Wegner [43].

Ad-hoc polymorphism makes it possible to write a ugen that has a different behavior depending
on the structural and nominal properties of the argument type. Ugens can also choose to ignore
types entirely, and rely on their constituent components to maintain correct semantics regardless of
type. As an example, most elementary filters only require summation and multiplication semantics
to be defined for the type of the signal in order to behave correctly. Such type-agnostic ugen
implementations are known as generic ugens.

It is noteworthy that the inheritance of type constraints from callees enables one to design poly-
morphic functions without type annotations. However, an explicit type annotation or a homomor-
phic function is always present at some levels in the call graph. In most cases, these are derived
from primitive operators or accessor functions that destructure a nominal type.

2.1.4 Simple Fω

System Fω is a concept from Barendregt’s [44] lambda cube, which describes lambda calculi with
different capabilities. All calculi feature terms that depend on terms – essentially ordinary functions
such as those in simple lambda calculus.

The addition of polymorphic functions yields System F, the second order lambda calculus. This
system adds terms that depend on types, giving functions the capability of adapt to the argument
type. The addition of type operators yields System Fω. Functions in Fω can compute on terms as
well as types.
Fω describes the Kronos type system. The notable omission is types depending on terms, or

dependent types, from System λω. In practical terms, this means that the result type of a function
can not depend on the runtime values of signals.

Since the flow control mechanisms in Kronos are based on type constraints and polymorphism,
System Fω results in a deterministic data- and control flow. This has important implications for
both the language semantics and the compiler implementation. Firstly, it renders the computing
layer of the language less expressive than the type system itself. Secondly, the determinism allows
significant program optimization. The gist of the design is an expressive metaprogramming layer –
via types – capable of producing highly optimized static signal processors.



2.2 implementation 21

The Kronos type system recognizes no built in collections of any kind. Instead, vectors, lists
and maps can be constructed algebraically from pairs. Together with the choice of type derivation
instead of inference, the typing pass becomes an algorithmically unremarkable global trace of the
program signal flow. However, as an compilation speed optimization, many recursive signal flows
are analyzed in closed form. This is an essential feature that enables the type derivation to scale
over operations on large collections and deep recursions. The analysis algorithm is presented in
P6 .

This simple type derivation system together with the properties of the Fω calculus is referred to
as Simple Fω, and is to the knowledge of the author unique to this study. Indeed, the benefits only
become apparent when combined with a suitable optimizing compiler, applied to a fairly narrow
problem domain with limited problem sizes, such as musical signal processing.

Given the deterministic data flow, this system features trivial and deterministic memory alloca-
tion behavior in all valid programs. All return values are implemented as side effects on caller-
allocated memory. The allocations and side effects can propagate multiple levels in the call hier-
archy. This results in very extensive copy elision, and is an important factor in making recursive
functions as efficient as possible. For an example, please refer to Section C.5.

2.1.5 Reactive Factorization

The deterministic data and program flow, as described in Section 2.1.4, makes full machine analysis
of data dependencies possible for arbitrary program fragments. The Kronos compiler features a
global data flow tracer that identifies dependencies between all the inputs to the program and all
the syntactic nodes in it, according to the reactive semantics described in Section 2.1.2.

To enable multirate processing, the compiler can insert state memory at the syntactic nodes
where update rate boundaries occur. Such state corresponds to the object oriented practice of using
member variables that cache intermediate values, but in Kronos they are generated automatically
by the compiler.

The data flow analysis further enables the machine code emitter stage to filter machine instruc-
tions according to reactivity. For example, an update routine can be emitted for a certain input to
the program, filtering out all the machine instructions that do not yield new output upon the input
event. Combined with the dead code optimization in the LLVM [27] pipeline, this produces highly
efficient update routines.

This system enables automatic factorization of a data flow program for each of its distinct exter-
nal inputs. The implicit state at signal rate boundaries provides interaction between clock sources,
without the user having to manually factor the program source into sections operating at different
update rates. It is notable that such automated factorization becomes impossible in the general
case if the underlying calculus is permitted to become more expressive than the Simple Fω, as
deterministic data flow is a requirement.

2.2 implementation

This section discusses the implementation of the Kronos compiler system in the C++ programming
language [11]. It is intended as a high level technical document that should be the first step in
understanding the source code.

The compiler components are discussed in program life cycle order, starting from Section 2.2.2,
Parser, discussing the internal representation of programs in Section 2.2.3 and eventual machine
code generation in Section 2.2.5. Appendix C elaborates this process via examples.



22 methodology

Relevant type names from the compiler source code are shown boxed in each section. The
namespace for the public API is Kronos , while the namespace used for the internal implementation
is K3 .

2.2.1 Application Programming Interface

The Kronos API is provided via a private implementation pattern. The client-facing header file
specifies abstract interface classes that implement either value or shared pointer reference seman-
tics, and completely inlined wrapper classes that contain the interfaces as private implementation
pointers. This technique provides a degree of potential cross-compiler binary compatibility be-
tween the library and the client. An overview of the client API is shown in Table 2.

Value and Shared Semantics

All public API classes in the Kronos namespace exhibit either value or reference semantics. The
classes indicated by “value” semantics in Table 2 can be copied and passed like regular C++ values.
The classes with “reference” semantics are smart pointers to an internal implementation. Copied
instances of these classes refer to the same underlying object, which is released when the last
reference is dropped. Finally, classes with “unique reference” semantics, all of them exception
types, appear as C++ constant references to abstract classes: it is not possible to construct these
instances.

Kronos Context

K3::TLS

Kronos::Context

Kronos context represents the state of the compiler and its code repository. Any usage of the
compiler is achieved through the context object. The context provides full isolation of all the
compiler internals, so multiple independent compilation contexts can exist within the same process.
Internally, the context object holds thread local storage for the compiler state, and all the imported
source code in parsed form.

2.2.2 Source Language and Units

namespace K3::Parser

The Kronos source language is a specification for representing programs in textual form. A com-
prehensive overview of the language structure is given in Appendix A. The parser is implemented
as a simple single pass recursive tokenizer, which builds a package of subpackages, functions and
the abstract syntax trees that define them. The resulting package can be sent to the code repository
in the generic graph form – see Section 2.2.3.

The source code is structured in units of text with an identifier. The units most commonly corre-
spond to files on disk, where the file path serves as an identifier. Code units can also be provided
via the network as a remote resource, where the sender provides an arbitrary identification token
for the unit.

The code repository of the current context is defined by a sequence of unit imports. Because
source order is significant in overload resolution, the unit order is important. That is why the com-
piler tracks the units in the repository, and when a unit import is performed with a identification



2.2 implementation 23

Table 2: Kronos API classes

typename semantics description

InternalError unique ref exception: compiler bug detected

RuntimeError unqiue ref exception: run time error

SyntaxError unique ref exception: syntax error in user code

TypeError unqiue ref exception: type error in user code

Type value a Kronos type

UserException unique ref uncaught user exception

Trigger value Compiled instance update callback

Var value Compiled instance variable

Instance shared ref Compiled instance state

Class shared ref Compiled code, constructs instances

Context shared ref A compilation context

already in the repository, the changes are applied to the pre-existing point in the import sequence
rather than appending it. In effect, the repository is rolled back to the state prior to the changed
unit, and rebuilt from that point. The repository maintains a version history of the unit import
sequence, each version being stored as a patch on the previous one.

Code units can declare dependencies on other units. Currently, only source code files local to
the compile server can be pulled in via explicit dependencies. The unit system maintains a source
order where dependencies always precede the unit that depends on them. The exception is circular
dependency: if a dependency chain reaches a unit multiple times, only the first dependency is
honored, the others ignored. This prevents an infinite recursive unit import chain.

2.2.3 Internal Representation of Programs

The compiler is founded on the concept of graphs and graph transformations. Kronos graphs are
lightweight, disposable and immutable. The transforms share the basic mechanism of preserving
graph topologies in the case of diamond and cycle shapes. This is accomplished by maintaining
source to destination maps for nodes that may be encountered multiple times during a transform
pass.

The transformation of a graph node would typically involve calling a node-specific transforma-
tion function and passing the transform object to it. Most routines would then use the object to
process transformed version of any upstream dependencies and recombine them according them
to the node specific logic.

Graph nodes are mutated during graph creation, and immutable afterwards. This affords the
pooling of resource allocation on a per-graph basis. Nodes are created with a region allocator
[45] associated with the current graph transform. The graph flow is built with unidirectional weak
references from downstream to upstream. Since no data is held about any downstream connections,
subgraphs can freely share structure. Most graph transforms only require upstream connections
to operate. In the remaining cases, per-graph maps are constructed that serve as reverse upstream
lookup. Graph objects hold strong references to memory pools that contain the nodes in them.

Many node objects do not require explicit destruction. The nodes that contain non-trivial mem-
bers or those that require deinitalization must be derived from one of the Disposable node types
in order to ensure that their destructors are called upon release. The debug build of the compiler
contains runtime checks for non-trivial destructors not declared as disposable.



24 methodology

Type

Kronos::Type

K3::Type

These objects describe the Kronos type notation. No signal data is ever associated with a type
object, but it can be used in conjunction with a binary blob to parse or print the blob as text.
Without a binary blob, the type can print itself as human readable text. Type objects are also used
to describe root level arguments or external inputs to a Kronos program.

This object exposes an API that corresponds to the semantics of the Kronos type system. Inter-
nally, homogenic tuples are run length encoded, such that common sequences of a single type are
efficiently represented.

Generic Graph

K3::Nodes::Generic

The generic graph is the internal representation of a Kronos program that is most closely related
to the source code. Each node in the graph corresponds to a construct in the program. Functions
are polymorphic and symbols refer to a particular code repository. The generic graph is untyped
and not executable.

Typed Graph

K3::Nodes::Typed

A typed graph is constructed from a generic graph via a specialization transform pass. This is
a reification of the generic program. Specialization starts from a generic graph with an optional
argument type. Forward type derivation is performed for the entire graph, with each polymorphic
function being resolved to a typed, monomorphic form.

If the program is free of type errors, a reified, typed graph is generated. This graph has full
type semantics and corresponds to concrete mathematical operations and the actual data flow of
the program.

Further transform passes are used to build a machine code representation of the typed graph via
the LLVM code generator.

2.2.4 Compilation Transform Passes

Identity

K3::Transform::Identity<T>

Identity transform is the simplest of all graph transforms. The standard identity transform rou-
tine for a node makes a shallow copy of the node, and proceeds to replace its upstream connections
with recursive transformations. Since Kronos graphs are immutable and share structure, copying
them is usually not necessary. The identity transform is mostly useful as a base mechanism for
other transforms.

Symbol Resolution

K3::SymbolResolution



2.2 implementation 25

This transform parses absolute and relative symbol names in a generic graph and resolves them
to specific entities in the code repository. The result is a generic graph, where symbols are replaced
with a direct reference to the expression they index.

The transform fails if a symbol can not be resolved.

Specialization

K3::Nodes::SpecializationTransform

The specialization transform is parametrized by function argument type. It accepts a generic
graph and results in a typed graph and a return type.

Any polymorphic function calls are recursively specialized. Generic recurring functions may be
compacted into typed function sequences if suitable argument evolution is detected, as explained
in P6 .

The specialization transform may fail if the program contains a type error. The type error may
be hard or soft; the soft SpecializationFailure causes a function form to be rejected in overload
resolution and the next form to be tried. Any other errors propagate back towards the transform
root until the entire transform fails or a suitable exception handler is found.

The specialization transform handles graph cycles by special treatment of delay nodes, which
are the only nodes for which the parser generates cycles. These nodes may return an incomplete
typed node that will be finalized once the transform is otherwise ready. The deferred processing is
accomplished by a per-transform post processing queue. Each delay node adds a post processing
step to the transform that finalizes the incomplete cycle. If a nested cycle is encountered, further
post processing steps may be added dynamically.

Please see Sections C.2–C.3 for a concrete example of the specialization transform.

Sequence Recognition

To specialize deeply recursive functions in constant time, the specialization transform attempts
to recognize recursion and reason about it in closed form. While type inference schemes [42] are
inherently capable of this, the simpler type derivation scheme must conceivably trace the entire data
flow of the program, since polymorphic ad-hoc recursion could well result in different overload
resolutions for each iteration. To prevent compilation times from escalating with recursion depth,
Kronos implements a type evolution analysis algorithm for recursive functions. This algorithm is
one of the main topics of P6 .

The analysis is performed by wrapping the argument type in a special, externally invisible rule
generator type. The specialization then proceeds normally. The rule generator records any inquiries
about the underlying type and the responses, such as whether the type is an algebraic compound
or an integer, or if the First of the pair is a floating point number. These inquiries become type
rules, which the rule generator lifts from the user program. In aggregate, the rules determine the
overload resolution behavior.

As a second step, argument evolution in the recursion is examined. The evolution analyzer is
capable of detecting recursive iteration such as taking the Rest of a list, once or several times,
as the sole recursive argument or a portion thereof, plain or as a component of a more complex
type. In addition, linearly increasing or decreasing invariant constants are included in the evolution
analysis. A recursive argument that consists of invariant types and successfully detected evolutions
can be converted to closed form: argument type is a function of the loop induction variable I.

Each rule of the overload resolution rule set is then parametrized by the induction variable. The
rule set becomes a group inequality describing the range of I for which the rules remain satisfied.



26 methodology

The iterations of the recursion within that range are thus guaranteed to resolve into the same
overload.

For cases that are not tail recursive, the overload resolution may depend on the function return
type as well. In these cases the evolution analysis is performed first for the argument – from
sequence start to end – and then for the return value, in reverse.

The benefit of sequence recognition is related to the simple type derivation scheme: without the
evolution analysis, specialization of deep recursions would be a linear time operation in proportion
to the recursion depth – in the case of a collection comprehension operation, to the size of the
collection. A successful sequence recognition can specialize such a sequence in constant time,
regardless of the depth. Please refer to Section C.3 for an example on sequence recognition.

Code Motion

K3::Backends::CodeMotionAnalysis K3::Backends::CodeMotionPass

This is an optimization pass for the typed graph that should be run before reactive analysis. It
traverses the program graph looking for equivalence classes of subgraphs. If a sufficient number of
equivalent expressions is found in the program, they are replaced by a dynamically scoped global
variable that is materialized at the outermost scope shared by the occurrences. Dead (unused)
function arguments may result from running this pass.

This pass is useful in reducing the amount of state generated by the compiler and hoisting
invariant computations out of loops.

Reactive Analysis

K3::Reactive::Analysis

This transform accepts a typed graph and produces a typed graph with associated reactivity
information. The result graph contains clock source annotation for every typed node, as well as
newly inserted boundary nodes at points where state memory is needed to preserve a signal at a
clock region boundary.

The reactive analysis handles recursion by reporting an incomplete clock source for recursive
connections. This incomplete clock source defers to any other clock source it encounters, while
keeping a record of them. When the recursive loop is complete, all the clock sources seen by the
loop are resolved and the incomplete clock is replaced by the result.

Please refer to Section C.4 for an example of reactiv analysis and factorization.

Side Effect Translation

K3::Backends::SideEffectCompiler

A transform pass that supports the final compiler pass. This pass reconstructs the functional
data flow with memory effects and ordering primitives. Signal structuring and destructuring is
replaced with pointer arithmetic. The resulting typed graph is no longer purely functional. Cycles
are broken and state- and temporary memory buffers are allocated. The output of this pass is
intended to be easily lowered to imperative idioms like machine code. Clock source annotations
from Reactive Analysis are preserved and relayed to any generated side effects. This allows reactive
factorization to filter the side effects as well.

Data flows are constructed bidirectionally. Arguments flow from upstream to downstream in the
graph. The basic destructuring operator First is a no-op in pointer arithmetic; Rest is replaced
with pointer arithmetic along with nodes that measure the size of the First . Pointer dereferencing



2.2 implementation 27

is added on demand, such as for the inputs of a simple mathematical operation that will map onto
a single machine instruction.

Return values are implemented by additional pointer parameters. The return value pointer
bundle is propagated upstream from the function root. If the return value is an algebraic composite,
structuring is handled by inverting the data flow: propagating the side effect up through a Pair

node is like destructuring the side effect. The left hand side of the node receives the side effect
pointer as is, while the right hand side is adjusted accordingly. The side effect propagation stops
at nodes like arithmetic and function calls. Memory writes are inserted at elementary operations,
while at function call nodes, the side effect pointer is passed as the root return value pointer to
the callee. In more complicated cases, where the return value of the callee is destructured and
structured, bundles of pointers can be passed as well. This means that the return value can be
discontiguous in memory, as required by full copy elision for return values.

Such a comprehensive copy elision scheme is possible due to the fully analyzed static data
flow. This often enables the transformation of a recursive function that performs destructuring and
structuring into a tail recursive form, which subsequently becomes a simple loop in the optimizer
pipeline. For an example, please refer to Section C.5.

2.2.5 LLVM Code Generation

LLVM Module

K3::Backends::LLVMModule

LLVMModule is responsible for the glue code that enables calling the public API of the generated
code. The module connects external inputs and triggers to callback and data slots inside an instance
of compiled code.

The most significant implementation detail in the LLVMModule is the vectorization of audio
processing. Kronos offers deterministic downsampling and upsampling operators that result in a
predictable dispatch pattern between frames that require control signal updates and those that do
not. The module code examines the clock rates used by the client code and determines a suitable
vectorization stride, such that control frames and audio frames can be interleaved without branches.
The module further emits prealignment and remainder code to process arbitrary numbers of sam-
ples at once, maintaining a subphase counter relative to the determinstic dispatch pattern fragment.
The dispatch pattern is discussed further in P6 .

Class

Kronos::Class

The client facing Class encompasses a compilation unit for which LLVM intermediate represen-
tation has been generated and optimized. The class can be queried for a list of instance variables
of type Var and triggers of type Trigger . The class can construct signal processor instances, either
by allocating a state blob, or in place with client provided memory. Instance construction compiles
the attached LLVM module to machine code, and associates it with a LLVM execution engine.

Alternatively, Classes support static ahead of time compilation. Instance construction and static
compilation are exclusive options; either action will make the other option illegal.

The Class object manages memory via shared reference semantics. Copies of the object refer to
the same class, and resources are freed once no copies exist. The actual code and symbol table are
held by this object.



28 methodology

Instance

Instance is a state blob associated with a compiled signal processor. Variables and callbacks can be
obtained from an instance. The variables can be mutated to supply external data to the instance.
The callbacks mutate the state blob and produce output. An instance object retains the class it was
constructed from. Instances manage memory via shared reference semantics. Copies of an instance
object refer to the same state blob, which will be retained until no copies exist.



3 D I S C U S S I O N

3.1 the impact of the study
This section discusses the results of this study and their relative significance. The attainment of
the objectives detailed in Section 1.3.1 is addressed via a supplementary example, shown in the
subsequent Section 3.1.1. This example attempts to distill the essential contributions of the Kronos
project to a small scale example. To better understand the source code shown, the reader may wish
to consult Appendix B, Tutorial and Appendix A, Language Reference.

Alternate, hypothetical methods of attaining a similar signal processing environment are treated
in Section 3.1.3.

3.1.1 Supplementary Example

The example consists of following principal components:

1. a Generic Feedback Oscillator defined to generate a waveform at audio rate from two pa-
rameters: an initial state, and an anonymous function that describes state evolution between
sample frames.

2. a Sinusoid Oscillator defined in terms of the generic feedback oscillator and a closure over
a complex multiplication coefficient.

3. an Additive Synthesizer that derives a set of sinusoids from a fundamental frequency and
frequency step between harmonics. The synthesizer is defined as map operation utilizing the
sinusoid oscillator as the mapping function.

The sinusoid synthesis method chosen here is based on a recursion derived from Euler’s formula:
it reduces to a unit-delay recursive complex multiplication. This method has the benefit of not
depending on any transcendental functions in audio processing: all the synthesis code shown is
directly generated by Kronos. Further, it allows a minimal yet useful demonstration of Kronos’
abstractive capability as a specialization of the generic feedback oscillator. Finally, the algorithm
provides a combination of good accuracy and computational efficiency – it is perfectly usable in
practical signal processing.

The program in source form is given in Listing 3.

Listing 3: Supplementary example: additive synthesis

; t h e A l g o r i t h m l i b r a r y c o n t a i n s h i g h e r o r d e r
; f u n c t i o n s l i k e E x p a n d , Map a n d R e d u c e

; t h e C o m p l e x l i b r a r y p r o v i d e s c o m p l e x a l g e b r a

; t h e IO l i b r a r y p r o v i d e s p a r a m e t e r i n p u t s

; t h e C l o s u r e l i b r a r y p r o v i d e s c a p t u r e s f o r

29



30 discussion

; l a m b d a s

; t h e M a t h l i b r a r y p r o v i d e s t h e P i c o n s t a n t

Import Algorithm
Import Complex
Import IO
Import Closure
Import Math
Import I m p l i c i t−Coerce

Generic−O s c i l l a t o r ( seed i t e r a t o r−func ) {
; o s c i l l a t o r o u t p u t i s i n i t i a l l y ’ s e e d ’ ,
; o t h e r w i s e t h e o u t p u t i s c o m p u t e d b y a p p l y i n g
; t h e i t e r a t o r f u n c t i o n t o t h e p r e v i o u s o u t p u t

; t h e a u d i o c l o c k r a t e i s i n j e c t e d i n t o t h e l o o p
; w i t h ’ A u d i o : S i g n a l ’

out = z−1(seed i t e r a t o r−func ( Audio : S igna l ( out ) ) )

; z−1 p r o d u c e s a n u n i t d e l a y o n i t s r i g h t h a n d s i d e
; a r g u m e n t : t h e l e f t h a n d s i d e i s u s e d f o r
; i n i t i a l i z a t i o n

; A u d i o : S i g n a l ( s i g ) r e s a m p l e s ’ s i g ’ t o a u d i o r a t e

Generic−O s c i l l a t o r = out
}

Sinusoid−O s c i l l a t o r ( f r e q ) {
; c o m p u t e a c o m p l e x f e e d b a c k c o e f f i c i e n t
norm = Math : Pi / Rate−of ( Audio : Clock )
feedback−coef = Complex : Unitary ( f r e q ∗ norm )

; C o m p l e x : U n i t a r y ( w ) r e t u r n s a c o m p l e x n u m b e r
; w i t h a r g u m e n t o f ’ w ’ a n d m o d u l u s o f 1 .

; i n i t i a l l y , t h e c o m p l e x w a v e f o r m s t a r t s f r o m
; p h a s e 0
i n i t i a l = Complex : Unitary ( 0 )

; H a s k e l l −s t y l e s e c t i o n ; a n i n c o m p l e t e b i n a r y o p e r a t o r
; b e c o m e s a n a n o n y m o u s u n a r y f u n c t i o n , h e r e c l o s i n g o v e r
; t h e f e e d b a c k c o e f f i c i e n t
s t a t e−evolut ion = (∗ feedback−coef )

; t h e o u t p u t o f t h e o s c i l l a t o r i s t h e r e a l p a r t o f t h e
; c o m p l e x s i n u s o i d
Sinusoid−O s c i l l a t o r = Complex : Real (

Generic−O s c i l l a t o r ( i n i t i a l s t a t e−evolut ion ) )
}

Main ( ) {
; r e c e i v e u s e r i n t e r f a c e p a r a m e t e r s
f0 = Control : Param ( " f0 " 0 )
f d e l t a = Control : Param ( " f d e l t a " 0 )

; n u m b e r o f o s c i l l a t o r s ; m u s t b e a n i n v a r i a n t c o n s t a n t
num−s i n e s = #50

; g e n e r a t e t h e f r e q u e n c y s p r e a d
f r e q s = Algorithm : Expand (num−s i n e s (+ ( f d e l t a + f0 ) ) f0 )

; a p p l y o s c i l l a t o r a l g o r i t h m t o e a c h f r e q u e n c y
oscs = Algorithm :Map( Sinusoid−O s c i l l a t o r f r e q s )



3.1 the impact of the study 31

; sum a l l t h e o s c i l l a t o r s a n d n o r m a l i z e
s i g = Algorithm : Reduce ( ( + ) oscs ) / num−s i n e s

Main = s i g
}

For demonstration purposes, the listing was compiled with the Kronos static compiler (see B.3.1),
using the -S switch to emit symbolic assembly. The examples conform to the Intel syntax, which
Kronos defaults to on the Windows platform.

The emitted code is the final result of all the compiler transform passes, including LLVM [27]
optimization and code generation. Selected portions of the compiler output are subsequently ex-
hibited and annotated.

Audio rate updates

The Expand call that computes the frequencies for all the oscillators is, as desired, absent from the
audio path. The first section of the code deals with the sinusoid oscillators and their state. A
fragment from the Map call is shown in Listing 4. The machine code exhibits four multiplications
and two summations, which is the expected amount for complex multiplication. Both factors of
the multiplication are read from a state memory buffer, accessed via the register rax , where they
are laid out contiguously in a cache-friendly manner. The generated state memory results from the
delay operation, z-1 , and the signal rate boundary from control to audio.

Listing 4: Inner loop of Map , audio rate

. LBB5_3 :
vmovss xmm1, dword ptr [ rax − 20 ]
vmovss dword ptr [ rsp + 4∗ r10 ] , xmm1

vmovss xmm2, dword ptr [ rax − 4 ]
vmovss xmm3, dword ptr [ rax ]
vmulss xmm4, xmm1, xmm3

vmulss xmm5, xmm2, dword ptr [ rax − 16 ]
vmulss xmm1, xmm1, xmm2

vaddss xmm2, xmm4, xmm5

vmovss dword ptr [ rax − 1 6 ] , xmm2

vmulss xmm2, xmm3, xmm2

vsubss xmm1, xmm1, xmm2

vmovss dword ptr [ rax − 2 0 ] , xmm1

inc r10

add rax , 24

cmp r10d , 47

j n e . LBB5_3

The Reduce call is minimalistic. The compiler has lowered a recursive fold by an anonymous
function over a vector of floating point numbers into a completely unrolled loop, which consists of
nothing but 49 vaddss instructions. An excerpt of the unrolled loop is shown in Listing 5.

Listing 5: Excerpt from Reduce , audio rate

. . .
vaddss xmm2, xmm2, dword ptr [ rsp + 116 ]
vaddss xmm2, xmm2, dword ptr [ rsp + 124 ]
vaddss xmm2, xmm2, dword ptr [ rsp + 128 ]
vaddss xmm2, xmm2, dword ptr [ rsp + 132 ]
vaddss xmm2, xmm2, dword ptr [ rsp + 136 ]
vaddss xmm2, xmm2, dword ptr [ rsp + 140 ]
vaddss xmm2, xmm2, dword ptr [ rsp + 144 ]

. . .



32 discussion

The control section exhibits nothing but the Expand call to compute oscillator frequencies. The
expensive transcendental functions required by the Complex:Unitary call are confined here, only occur-
ring when the control parameters are updated.

In summary, the example demonstrates several aspects of the Kronos language and compiler,
and the lowering of high level abstract code to static, highly efficient idioms:

1. Abstract state memory generated by the compiler, enabling the unit delay feedback path in
the generic oscillator.

2. Generic algorithms, as the feedback oscillator algorithm has no knowledge of the kind of
state or iteration function later applied to it.

3. Ad-hoc Polymorphism, as the multiplication uses complex number semantics based on the
data type.

4. Higher order functions, as the mapping function applies a generic function previously de-
fined by the user over a vector of values.

5. Signal rate factorization, as the computation of a complex feedback coefficient from a fre-
quency value is automatically moved from the audio path to the control path, despite being
deeply intertwined within the audio path. State memory is automatically inserted to enable
multirate interaction.

In summary, the author believes that the combination of metaprogramming with reactive factor-
ization and aggressive optimization yields a unique signal processing environment where abstrac-
tion that helps programmer productivity and comfort can be deployed with minimal efficiency cost.
The extreme composability and flexibility of functions written in the Kronos language is demon-
strated; the example contains a model of recursive composition in the form of a generic oscillator,
a sinusoid oscillator defined in terms of this generic oscillator and a state evolution closure – and
higher order functions that apply such a construct over vectors of values with minimal effort from
the programmer.

It is to be noted that the utilized higher order functions Expand , Map and Reduce have no special
support from the compiler: they are parsed from a textual source, freely available for the user to
inspect and modify. Despite this deeply layered automation, the resulting machine code is quite
similar to what a hand-written low level C program would produce.

The counterpoint to these advances is the strict isolation of runtime data from the program
control flow; this ensures the determinism necessary for much of the automation in the compiler
back end to take place. It’s fairly clear that such a model would never be viable for a general
purpose programming language. However, the author of this report believes that it represents an
interesting and a genuinely new method for signal processor design and implementation.

Comparison to FAUST

FAUST by Orlarey et al. [9] is an earlier compiler research project for musical signal processing,
whose results have greatly benefited this study. FAUST demonstrates the feasibility of the func-
tional approach to signal processing and abstracting stateful memory as operators. A comparison
of FAUST and Kronos is also given in P1 .

FAUST is originally a monorate language. Initially, it was designed to have audio signals and
parameters, the latter of which are updated once per audio buffer. While optimizations like loop
invariant code motion can perform a small subset of the optimizations available in the Kronos
reactive factorization, stateful operations such as delays are only possible within the audio path.



3.1 the impact of the study 33

Recently, multirate extensions to FAUST have been investigated by Jouvelot and Orlaley [24].
The proposed vectorization and serialization semantics offer a subset of the Kronos deterministic
multirate model – in Kronos, such primitives are constructed of ring buffers, decimators, upsam-
plers and wave table readers. Dynamic clock masking or processing of event-based streams is not
available in FAUST as of this writing.

The principal advantage of FAUST is the relative maturity of the system. The compiler can
build signal processors for various frameworks automatically [46]. Several large projects have been
ported to FAUST, such as the Synthesis Toolkit [47, 48].

The FAUST language is arguably lower level than Kronos, lacking nominal typing and generic
functions. A more limited type of polymorphism is available, implemented as pattern matching
for arguments. FAUST supports anonymous functions, but at the time this report was written, no
closures or captures. The main syntactic contribution of FAUST, the terse block diagram algebra,
can be implemented as a domain language in Kronos, by using custom infix functions and closures.
An indication of how such a domain lanuage could be designed is given in Section B.2.4.

An interesting avenue of future work could be to add automatic generation of glue code to enable
Kronos signal processors to work with FAUST architecture files. In addition, transcompilation
between the languages could be possible.

3.1.2 Comparison to Object Oriented Programming

Signal processors implemented in an imperative language tend to follow the basic principles of
object orientation, as discussed by Lazzarini [20]. The imperative idiom is chronological, while the
functional approach taken by Kronos is topological. The fundamental difference was elaborated in
Section 2.1.1. Imperative programs provide an explicit sequence of commands, often moving the
signal from one memory location to the next in great detail. By contrast, the functional approach
describes the data flow, leaving implementation details to the compiler.

Kronos further pursues the functional approach for the musical signal processing domain. Sev-
eral assumptions are made about how the data flow should work, especially regarding the process-
ing of multirate signals.

In the case of imperative programming, the multirate problem of is a classic case of cross cutting
concerns [49]. The problem of scheduling is interleaved with the actual signal processing. Imper-
ative code must deal with the cross cut explicitly, transferring control to relevant signal processor
objects at appropriate times. The scheduling code is difficult to detangle from the signal processing
code for all but the most trivial cases.

The Kronos compiler automatically weaves the cross cutting aspects for the particular reactive
signal model it supports and enforces. The reactive factorization, discussed in Section 2.1.5, extracts
the appropriate code sequences for each external trigger, while adding implicit state to support
multirate interaction.

This implicit state is often similar to the private members in an object oriented signal processor.
The object would typically expose a high level interface. Consider a low pass filter; this interface
could consist of a corner frequency and a quality factor. When these are adjusted, the filter object
updates internal coefficients, which will be used in the actual signal processing routine, instead of
the high level parameters.

This is a case of manual multirate factorization: since some computations in the filter equation
only depend on control parameters, not audio, it is efficient to only recompute them when the
control parameters change, and store the intermediate result internally. In the case of a Kronos
program, the intermediate results would be generated implicitly, due to the filter containing a
signal rate boundary. It is notable that in the case of there being audio rate modulation of the
filter parameters, the compiler automatically generates a stateless direct connection. Both cases are



34 discussion

similar to how a manual implementation in the imperative idiom would be written, but entirely
derived from the data flow of the program.

Further isomorphisms between the Kronos language and object oriented programming are dis-
cussed in P1 .

3.1.3 Alternate Implementation Strategies

An extremely important question in the evaluation of any novel programming language is whether
the claimed benefits could have been realized with some tools that already exist. This litmus test
is important for several reasons. Firstly, a new language is a formidable commitment for both the
author and the end users. If similar results can be had with existing tools, such a commitment is
difficult to argue for. Secondly, established languages benefit from a large body of existing work.
Tutorials, libraries and tooling is readily available. The situation is unavoidably worse for a niche
language; the deficit must be compensated by improvements not available elsewhere.

This section briefly examines some alternatives to reaching results similar to those provided by
the Kronos technology described in this report.

C++ Templates

The C++ template metacompiler [41] shares some important features with the Kronos compiler,
and has been an important influence in its design. Generic C++ classes and functions are similar
to Kronos source programs, in the sense that they are dynamically typed until reified from a set of
root types – similar to the process described in Section 2.1.3. Like Kronos, the template compiler
performs simple type derivation.

It is conceivable that a domain language implemented in C++, with heavy use of templates,
could be designed to offer semantics similar to those presented in this report.

Such an approach would, to the best of the author’s knowledge, likely fail. While the C++
template system is expressive enough to model the semantics of the Kronos language, it is not,
as of this writing, designed to scale to similar extents. Kronos can effortlessly specialize a typical
recursive function to depths of thousands or millions, something not generally recommended for
C++ templates. The design complexity of such a library would also likely rival or exceed that of
the Kronos compiler.

The second concern relates to error messages. It is not clear how a C++ library with such heavy
reliance on templates could be designed to fail with error messages that make sense to the target
demographic. This could conceivably change in the future, as concepts are introduced to C++, but
would likely still remain problematic.

The third concern is compilation time. Just in time compilation for C++ is rare and cumbersome.
The compile cycle is slow, especially in the case of extensive use of templates. Immediate feedback
and conversational programming [14] seem out of reach.

In summary, a domain language similar to Kronos, designed as a C++ library, would likely be
very hard to design, difficult to use and slow to compile. The possible benefits are not apparent to
the author.

Using a Proven Dynamic Language to Generate DSPs

The Kronos programming language can be seen as a two-layered design: a dynamic metaprogram-
ming language (the type system) targeting a low level efficient representation (the reified program).
It is conceivable that an estabilished dynamic language could be used as the metaprogramming
layer, targeting a suitable low level representation – which could well be the reified stage of a
Kronos program.



3.2 future work 35

Sorensen’s [50] Impromptu Compiler Runtime comes close to this approach. In ICR, the SCHEME
language is intertwined with a more restrictive, statically typed domain language called xt-lang.
Here, SCHEME corresponds to the generic Kronos program, while xt-lang corresponds to the
reified, statically typed Kronos program. Xt-lang is roughly on the abstractive level of C, and
provides similar performance characteristics. Its main advantages are the tight integration with
the Impromptu environment for rapid, incremental development, and a syntax more amenable to
SCHEME-based metaprogramming.

It should be admitted that the isomorphism between these approaches was not properly under-
stood by the author before the insights afforded by this study. Nevertheless, there are arguments
that can be made in retrospect for the design of a bespoke language–compiler stack.

The dichotomy of two languages, as exhibited in ICR, can not be escaped in an approach like
this. This is not a criticism of the approach: to expect the power of SCHEME in the context of
signal processing is wildly optimistic with current technology.

A similar dichotomy exists in the Kronos type system; the types capable of influencing flow
control, including the lifted number and string types, belong to the dynamic layer, while run time
variant values belong to the static layer.

The type reification rules in Kronos are simple; defined in terms of the System Fω. The primitives
of the language are defined to make sense in the two-layered construction. Function application,
pair construction and destructuring are lowered to the static idiom automatically. To replicate this
functionality in a dynamic language, basic primitives would need to be overloaded to treat dynamic
and static data differently. Function application would need to perform extensive meta-reflection
to determine whether the call should be lowered to the static idiom or applied during the dynamic
pass. If the overloading couldn’t be done at the level of primitives, as is the case in SCHEME, only
functions that understand and respect the dual domains could be safely used in user programs.
The benefits of interfacing with existing code bases would be diminished, since they would not be
designed for the dual layer approach.

In Kronos, the layer dichotomy is represented cleanly by the Simple Fω system, as described in
Section 2.1.4. The capabilities and limitations of each layer result from simple, well defined rules. It
is not possible to write non-compliant programs. The Kronos approach to metaprogramming and
productivity is not the only one; indeed, ICR [50] is an interesting, viable method for signal process-
ing. However, advantages provided by the Kronos compiler stack, such as reactive factorization,
would be hard to integrate.

3.2 future work

In most signal processors, the majority of signal paths are hard coded. In Kronos, design of the
type-deterministic signal graph reflects this assumption. Some dynamic routings can be achieved
by signal clock gating and selection operators; however, it should be noted that these facilities are
aimed at avoiding wasted computation, rather than true dynamic reconfigurability.

There are cases where the lack of a run time reconfigurable signal graph is truly detrimental,
especially as the programs move from low level signal processing kernels to more complicated
high level systems, such as programs that represent complete musical works or large parts thereof.
Next, a number of problematic areas in the current Kronos compiler and language, as well as
avenues for potential improvement, will be discussed.



36 discussion

Auralization of Scores

Consider the auralization of a musical score. One elegant, widely applied mapping is from score
object to program object; a signal processor is instantiated per note, containing state that is private
to that note, to be disposed of as the note ends. Such semantics are not easily expressible in the
Kronos language: it is focused on data flow and signal processing, as opposed to higher-level
instantiation and scheduling of signal processors.

This is evident form the fact that the language lacks dynamic memory semantics and mutable
signal graphs. Further, the stateful operators are designed to “hide time” from the programmer.
Kronos programs are, in their entirety, topologies rather than chronologies. This very fact enables
the compiler to treat stateful operators as pure functions – which in turn enables almost all of the
novel capabilities it offers. At the same time, this design precludes programmatic access to explicit
flow control, as the compiler must have precise control over program execution order.

It could be argued that musical notation is an excessively high level abstraction for signal pro-
cessor control data. Likewise, the idioms ideal for score processing and signal processing are
not necessarily related or even compatible; in the MUSICn [16] tradition, different programming
languages are used to address scores, instruments and orchestras.

Perhaps the problem of an all-encompassing musical programming environment would be better
solved by providing Kronos bindings to a suitable scripting language in which the score and object
logic could be written. This approach has promise, but also a number of pitfalls related to the
integration of the idioms and a potential mix-up of semantics such as described in Section 3.1.3.

Dynamic Branches

As noted in Section 2.1.4, the underlying computational structure permitted for Kronos programs is
strict and restrictive. The foundation of the design is to make the metaprogramming layer provided
by the type system as flexible and expressive as possible, while providing an easily optimizable
intermediate representation to the code generator. If the core language featured dynamic branching,
it would significantly extend its coverage to a range of new problem domains; working with scores
and high level musical representations could be one of them.

A promising approach for implementing dynamic branches is to apply type erasure to closures.
They are currently distinct types based on the function body and capture list. Erased closures
could be interchangeable at run time, enabling dynamic control flow via selection from an array of
closures.

Questions remain: how would the implicit state of the closures be managed and what are the
semantics of mutating the signal graph in relation to stateful memory operators in each branch
target? How to minimize the performance impact of a dynamic branch, especially as a simple
implementation would see it evaluated per sample? An interesting approach could involve the
LLVM [27] patchpoint mechanism and self-modifying code.

I/O and Programs with Effects

Functional programs are well suited for expressing data flows. The functional paradigm works
equally well in musical signal processing: in addition to the findings in this study, the success of
the Faust project [23] is a compelling argument.

However, the functional paradigm is less suited for expressing the effects of the program on the
surrounding world. If a program is to be observable and potentially useful, it must, at some point,
observe or mutate the state of a human interaction device such as a speaker, video display or a
keyboard.



3.2 future work 37

The approach shared by this study and the Faust project [23] is to externalize these concerns.
Faust programs produce an audio stream by definition, and it is the responsibility of the surround-
ing architecture [46], expressed in a different programming language, to bridge the gap between
functional signal processors and the stateful devices of interaction.

There are purely functional programming languages that do deal with these problems; Haskell
[51] is a prominent example. Haskell programs with I/O appear imperative at a first glance. Mon-
ads are employed to construct data flow programs out of sequential imperative programs; finally, a
restricted set of external impure functions is utilized to add I/O functionality. The I/O language in
Haskell is an embedded domain language, used to perform top-level sequencing, while pure functional
code is used for processing data.

The wording of top-level sequencing evokes musical programming. As Kronos focuses on metapro-
gramming, an embedded domain language for I/O and effects could well be viable. The I/O com-
mands could include message sending protocols such as OSC [25] or MIDI. Instantiation of Kronos
closures as signal processors could be one of the effects. The addition of scheduling code via timed
callbacks would enable temporal recursion [50] and open the door to a variety of time-variant
programs [52, 53].

A domain language such as the one envisioned in the preceding paragraph would be subject to
the criticism presented in Section 3.1.3. This is still a compelling avenue for future work, as the
integration between the signal processor idiom and the score level idiom could be more seamless
than would be possible otherwise. The score language would in fact be built on the metaprogram-
ming facility that also generates the signal graphs it manages – the scripting language alluded to
in Section 3.2 would in fact be directly embedded in the core language.

Automatic Parallelization

Automatic parallelization of user programs is yet another interesting topic. Because current hard-
ware trends emphasize throughput over latency, the parallel work units should consist of vectors
of samples, without fine grained synchronization with other work units. A successful implementa-
tion is related to the dynamic branch problem mentioned in Section 3.2; it would be beneficial to
be able to isolate subgraphs of the user program and vectorize them, for both dynamic and parallel
dispatch.

The language semantics afford this well, as both the reactive model and the type derivation
processes can be made transparent to whether the subgraphs of a program are compiled into a
single signal processor or several interconnected modules. Providing an automatic signal processor
modularizer is not unreasonable, and could provide the basis for both dynamic semantics and
automatic parallelization.

For most cases, though, parallelization is better left outside the signal processor. Typically, load
balancing is best achieved by the host program that runs the processor within its own audio graph.
Nested parallelization and synchronization structures are especially inefficient and problematic.
However, providing parallelization at the compiler level could expand the domain covered by
the Kronos language from low level signal processors towards more complicated standalone music
rendering systems, especially in combination with a instance management and scheduling solution.

Automatic Vectorization

Automatic, transparent vectorization for SIMD [54] architectures was studied and prototyped dur-
ing this project. This work was deemed outside the scope of this report, but preliminary results are
promising. Generic types, overloading and metaprogramming work well for constructing instruc-
tion level data parallelism from arbitrary algorithms. Typical auto-vectorization occurs late in the



38 discussion

compiler optimizer pipeline. There are a number of benefits in applying it at the type derivation
stage: this way, the compiler sees vectorized constructs already when performing early data flow
analysis and state reification, allowing it to generate SIMD-friendly constructs naturally.

In future work, carefully designed and tested vectorizing variants of functions like Map and
Reduce could be deployed. As generic programming is ubiquitous in Kronos, most signal processors

are amenable to vectorization even when not explicitly designed for it.

Instrumentation, Tooling and Learnability

To realize the pedagogical and conversational [14] potential of the Kronos language and compiler,
supporting toolchain must be built. A patcher prototype, deemed outside the scope of this study,
exists [32], but has seen limited classroom use as of yet. For a proper evaluation of whether the
language can meet the promise to cater to domain experts, further study in this area is required.

Recent trends in learning and deeply understanding programming can be traced back to the
seminal work by Papert [55]. His work deals primarily with children, but has been recently applied
more generally to multiple kinds of learners. Victor [56] offers a contemporary take on the subject.

The Kronos compiler successfully fulfills an important technical prerequisite to conversational
[14], learnable programming: compile times are extremely short. Thus, programmer feedback
can be fairly immediate. However, to fully enable the conversational development model, the
programmer tools should be developed to enable extensive and immediate visual feedback. A
recent example of a study of programmer–environment interaction was done by Lieber et al [57]. A
simple code metric displayed as continuous feedback, integrated within the code editor, was found
to influence developer workflows significantly.

The musical signal processing domain is conductive to such tooling, as users are widely familiar
with standard instrumentation such as level meters, oscilloscopes and transfer functions. An ideal
interactive debugger for signal processors would likely offer such instrumentation instead of the
traditional textual watch windows. The implementation and study of new programming tools built
on the Kronos infrastructure is an important future topic.

Applications and Libraries

Further study of the performance and capability of the Kronos compiler and language depend on
a large set of test cases. The domain of applying higher abstraction to the generation of signal
processors is also largely unexplored. The metaprogramming facilities of the compiler provide a
lot of potential for “magic” and automation. Depending on how well the program code is designed,
such magic can seem either helpful and productive, or opaque and confusing. The principles and
best practices for striving for the former require experimentation and solidifying.

The examples listed in Appendix B describe how the semantics of the language support con-
structs such as higher order functions and closures for a flexible system of algorithmic routing.
The application and development of such principles in various subdomains of signal processing,
including filter design, spectral analysis, circuit modeling and reverberation is an interesting av-
enue for further research.

The libraries themselves would further enhance the pedagogical potential of the platform, as
the processors could readily be supplied in source form, from high level abstractions down to the
tiniest of details.



4 C O N C L U S I O N

This study presented Kronos, a signal processing language and a compiler suite built on the LLVM
[27] infrastructure. The project consists of this written report, the compiler software, and example
programs, all of them openly available to interested parties.

The Kronos language strives to lower the barrier to entry in the fundamentals of signal process-
ing, especially to musicians and composers interested in such activities. The research problem was
formulated as a signal processing language that offers the following main features (1.3);

1. Unified Signal Model

2. Composable and Abstractive Ugens

3. Visual Programming

This design addresses some key weaknesses in the state of art. The popular visual programming
surface is not conductive to abstraction in the imperative domain, but the problem is resolved with
functional programming techniques (2.1.1). The functional paradigm is also synergistic with the
idea of increased abstraction and composition of unit generators.

The typical implementation strategy utilized in most signal processing languages, the ugen in-
terpreter, also disincentivizes code composition, reuse and abstraction. The abstractive principle –
information hiding – should not be automatically understood as something that increases the dif-
ficulty and sophistication of programs. Rather, by hiding information that is irrelevant, it should
enhance them with clarity and conciseness.

The design challenge of abstract systems is to deem what is relevant and what is not. This
distinction is greater in a strictly domain specific language, in comparison to a general purpose
language. If a particular programming paradigm is enforced, more assumptions can be made about
the programmer intent, and fewer details need explication. Further, the compiler can be built to
perform program transformations that would be very hard or impossible to integrate to general
purpose languages. In the Kronos language, such transformations include automated reification of
abstract state memory (2.1.2), whole-program type derivation (2.1.3), and most importantly, reactive
factorization of a single data flow into distinct clock regions (2.1.5).

Such transformations, in aggregate, enable a programming model where source code is simple
and minimal, supports abstraction and composability, yet runs very efficiently. The Kronos system
can be seen as a dual language: the expressive type system, utilized for metaprogramming pur-
poses, and the less expressive, static, streamlined runtime. The dichotomy of these two is expressed
cleanly as Type Determinism in terms of the Simple Fω (2.1.4, P3 ).

The implementation of Kronos in the C++ programming language [11] and its usage as a library
is discussed in Section 2.2, which is a high level technical document of the source code.

The executable result of the Kronos compiler is quite close to that of state of art optimizing com-
pilers for object oriented programs in C++ [11]. Object oriented languages emphasis the explicit
transfer of control in code, or the chronological sequence of instructions. The Kronos model pro-
motes a topological program based on data flow. It is naturally suited for visual representation and

39



40 conclusion

manipulation. Further, the data flow model offers a clearer, more concise representation of typical
signal processors. This is especially true in the case of multirate signal processing. On the other
hand, the Kronos representation is certainly less flexible: if the proposed semantics for a unified
signal model ( P1 , P2 ) do not suit the task at hand, the language has limited capability to adapt.

The principal outcome of the study is a programming model with novel tradeoffs, as discussed
above. The combination of an expressive metaprogramming layer with highly restricted computa-
tional model enables the use of advanced functional techniques like closures, higher order functions
and ad-hoc polymorphism [43]. This is novel in the context of signal processing, traditionally a
realm of low level of abstraction. By delimiting the advanced techniques to the metaprogramming
layer, the resulting program runs as efficiently as most manually optimized low level programs.

The viability of the programming model for an expanding subset of musical programming task
is an important topic of future study. The ability of domain experts to adopt a functional, reactive
programming model is interesting from both a pedagogical standpoint as well as an indicator of a
successful design. The best practices for designing programs that are clear in intent in the visual
domain are as of yet not systematically explored. To maximize the pedagocical and conversational
[14] potential of the language, the study should be extended to development tools and the program-
mer experience. Likewise, further technical advancements, like parallel and vector processing, are
interesting topics for a metaprogramming-based approach.



R E F E R E N C E S

[1] Vesa Norilo. Kronos: A Declarative Metaprogramming Language for Digital Signal Processing.
Computer Music Journal, 39(4), 2015.

[2] Vesa Norilo and Mikael Laurson. A Unified Model for Audio and Control Signals in
PWGLSynth. In Proceedings of the International Computer Music Conference, Belfast, 2008.

[3] Vesa Norilo. Introducing Kronos - A Novel Approach to Signal Processing Languages. In
Frank Neumann and Victor Lazzarini, editors, Proceedings of the Linux Audio Conference, pages
9–16, Maynooth, 2011. NUIM.

[4] Vesa Norilo. Designing Synthetic Reverberators in Kronos. In Proceedings of the International
Computer Music Conference, pages 96–99, Huddersfield, 2011.

[5] Digital Audio Effects. Kronos Vst – the Programmable Effect Plugin. In Proceedings of the
International Conference on Digital Audio Effects, Maynooth, 2013.

[6] Vesa Norilo. Recent Developments in the Kronos Programming Language. In Proceedings of
the International Computer Music Conference, Perth, 2013.

[7] Max V Mathews. An acoustic compiler for music and psychological stimuli. Bell System
Technical Journal, 40(3):677–694, 1961.

[8] James McCartney. Rethinking the Computer Music Language: SuperCollider. Computer Music
Journal, 26(4):61–68, 2002.

[9] Yann Orlarey, Dominique Fober, and Stephane Letz. FAUST: An Efficient Functional Approach
to DSP Programming. In Gérard Assayag and Andrew Gerszo, editors, New Computational
Paradigms for Music, pages 65–97. Delatour France, IRCAM, Paris, 2009.

[10] Mikael Laurson, Mika Kuuskankare, and Vesa Norilo. An Overview of PWGL, a Visual Pro-
gramming Environment for Music. Computer Music Journal, 33(1):19–31, 2009.

[11] 14882:2011. Information technology - Programming languages - C++. ISO/IEC, 2011.

[12] Andrew Hugill. The Digital Musician. Routledge, New York, 2008.

[13] Linda Candy. Research and Creative Practice. In Linda Candy and Ernest Edmonds, editors,
Interacting - Art, Research and the Creative Practitioner, pages 33–59. Libri Publishing, Faringdon,
2011.

[14] Julian Rohrhuber and Alberto de Campo. Improvising Formalisation: Conversational Pro-
gramming and Live Coding. In Gérard Assayag and Andrew Gerzso, editors, New Computa-
tional Paradigms for Music, pages 113–125. Delatour France, IRCAM, 2009.

[15] Peter Manning. Electronic and computer music. Oxford University Press, 2013.

41



42 references

[16] Victor Lazzarini. The Development of Computer Music Programming Systems. Journal of New
Music Research, 42(1):97–110, March 2013.

[17] Richard Boulanger. The Csound Book, volume 309. MIT Press, 2000.

[18] Miller Puckette and David Zicarelli. MAX - An Interactive Graphical Programming Environment.
Opcode Systems, 1990.

[19] M Puckette. Pure data: another integrated computer music environment. In Proceedings of the
1996 International Computer Music Conference, pages 269–272, 1996.

[20] Victor Lazzarini. Audio Signal Processing and Object-Oriented Systems. Proceedings of the 2002
International Conference for Digital Audio Effects, pages 211–216, 2002.

[21] T W Pratt. Design and Implementation of Programming Languages. Number PRG-40 in (LNCS 54).
Prentice Hall, 2010.

[22] Adrian Freed, John MacCallum, and Andrew Schmeder. Composability for Musical Gesture
Signal Processing using new OSC-based Object and Functional Programming Extensions to
Max/MSP. In New Interfaces for Musical Expression, Oslo, Norway, 2011.

[23] Y Orlarey, D Fober, and S Letz. Syntactical and semantical aspects of Faust. Soft Computing,
8(9):623–632, 2004.

[24] Pierre Jouvelot and Yann Orlarey. Dependent vector types for data structuring in multirate
Faust. Computer Languages, Systems and Structures, 37(3):113–131, 2011.

[25] Matthew Wright, Adrian Freed, and Ali Momeni. OpenSound Control: State of the Art 2003.
In Proceedings of NIME, pages 153–159, Montreal, 2003.

[26] Ge Wang. The ChucK Audio Programming Language : A Strongly-timed and On-the-fly
Environmentality. PhD Thesis, (September):175, 2008.

[27] C Lattner and V Adve. LLVM: A compilation framework for lifelong program analysis &
transformation. International Symposium on Code Generation and Optimization 2004 CGO 2004,
57(c):75–86, 2004.

[28] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare. PWGLSynth: A Visual Synthesis Lan-
guage for Virtual Instrument Design and Control. Computer Music Journal, 29(3):29–41, 2005.

[29] Vesa Norilo and Mikael Laurson. Kronos - a vectorizing compiler for music dsp. In Proc.
Digital Audio Effects (DAFx-10), pages 180–183, Lago di Como, 2009.

[30] Vesa Norilo and Mikael Laurson. A method of generic programming for high performance
{DSP}. In Proc. Digital Audio Effects (DAFx-10), pages 65–68, Graz, 2010.

[31] Vesa Norilo. A Grammar for Analyzing and Optimizing Audio Graphs. In Geoffroy Peeters,
editor, Proceedings of International Conference on Digital Audio Effects, number 1, pages 217–220,
Paris, 2011. IRCAM.

[32] V Norilo. Visualization of Signals and Algorithms in Kronos. In Proceedings of the International
Conference on Digital . . . , pages 15–18, York, 2012.



references 43

[33] Vesa Norilo. Kronos as a Visual Development Tool for Mobile Applications. In Proceedings of
the International Computer Music Conference, pages 144–147, Ljubljana, 2012.

[34] Mika Kuuskankare and Vesa Norilo. Rhythm reading exercises with PWGL. In Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 8095 LNCS, pages 165–177, Cyprus, 2013.

[35] Josue Moreno and Vesa Norilo. A Type-based Approach to Generative Parameter Mapping.
In Proceedings of the International Computer Music Conference, pages 467–470, Perth, 2013.

[36] Paul Hudak. Conception, evolution, and application of functional programming languages.
ACM Computing Surveys, 21(3):359–411, 1989.

[37] Felice Cardone and J Roger Hindley. History of lambda-calculus and combinatory logic. Hand-
book of the History of Logic, 5:723–817, 2006.

[38] Peter Van Roy. Programming Paradigms for Dummies: What Every Programmer Should
Know. In Gérard Assayag and Andrew Gerzso, editors, New Computational Paradigms for
Music, pages 9–49. Delatour France, IRCAM, Paris, 2009.

[39] Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 1–14. ACM, 1992.

[40] G Kiczales. Aspect-oriented Programming. ACM Computing Surveys, 28(4es):154, 1996.

[41] David Abrahams and Aleksy Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond. C++ In-Depth. Addison Wesley, 2005.

[42] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of Standard ML.
MIT Press, revised edition, 1997.

[43] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and Polymor-
phism. ACM Computing Surveys, 17(4):471–522, 1985.

[44] HP Barendregt. Introduction to generalized type systems. Journal of functional programming,
1(2):124–154, 1991.

[45] David R Hanson. Fast Allocation and Deallocation of Memory Based on Object Lifetimes.
Software Practice and Experience, 20:5–12, 1990.

[46] Dominique Fober, Yann Orlarey, and Stephane Letz. FAUST Architectures Design and OSC
Support. In Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), pages 213–216,
2011.

[47] Gary Scavone and Perry Cook. RtMidi, RtAudio, and a Synthesis ToolKit (STK) update. In
Proceedings of the 2005 International Computer Music Conference, pages 327–330, Barcelona, 2005.

[48] Romain Michon and Julius O. Smith. FAUST-STK: a set of linear and nonlinear physical
models for the FAUST programming language. In Geoffroy Peeters, editor, Proc. of the 14th Int.
Conference on Digital Audio Effects (DAFx-11), pages 199–204. IRCAM, Centre Pompidou, 2011.

[49] Peri Tarr, Harold Ossher, William Harrison, and Stanley M Sutton Jr. N degrees of separation:
multi-dimensional separation of concerns. In Proceedings of the 21st international conference on
Software engineering, pages 107–119. ACM, 1999.



44 references

[50] Andrew Sorensen and Henry Gardner. Programming With Time Cyber-physical programming
with Impromptu. Time, 45:822–834, 2010.

[51] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell.
Proceedings of the third ACM SIGPLAN conference on History of programming languages HOPL III,
pages 12–1–12–55, 2007.

[52] Roger B Dannenberg. Expressing Temporal Behavior Declaratively. In Richard F Rashid,
editor, CMU Computer Science, A 25th Anniversary Commemorative, pages 47–68. ACM Press,
1991.

[53] Graham Wakefield, Wesley Smith, and Charles Roberts. LuaAV: Extensibility and Heterogene-
ity for Audiovisual Computing. Proceedings of the Linux Audio Conference, 2010.

[54] Michael Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, 21(9):948–960, 1972.

[55] Seymour Papert. Mindstorms: children, computers, and powerful ideas. Basic Books Inc, New
York, 1980.

[56] Bret Victor. Learnable Programming, 2012.

[57] Tom Lieber, Joel Brandt, and Robert Miller. Addressing Misconceptions About Code with
Always-On Programming Visualizations. In Proceedings of ACM CHI, Toronto, 2014. ACM.



Part II

Publications

45





S U M M A R Y O F T H E P U B L I C AT I O N S

p1 kronos: a declarative metaprogramming language for
digital signal processing

P1 provides an up-to-date overview of the Kronos project. The article discusses the prominent
programming paradigm, the unit generator graph, and several existing programming languages
departing or enhancing the model. An in-depth look at Faust [23] is provided and Kronos and
Faust are contrasted and compared. The principle of metaprogramming is presented as a highly
general solution to signal graph generation. The reactive multirate signal processing scheme is
analyzed and isomorphisms to object oriented programming are identified. The author of this
report is the sole author of the article, which is included here as a revised manuscript.

p2 a unified model for audio and control signals in pwglsynth

P2 presents the founding principle of the reactive multirate factorization that is a cornerstone of
this work. It develops and generalizes the traditional concept of control and audio rate and its
relation to data and demand driven scheduling of computation. These concepts were developed
within the context of PWGLSynth. The article is written by the author. The PWGLSynth engine
discussed in the article has been designed jointly by the author and Dr Mikael Laurson.

p3 introducing kronos – a novel approach to signal pro-
cessing languages

P3 presents an early overview of Kronos and many of its founding principles. It focuses on the
application of multirate factorization to various elementary signal processors such as delay, basic
reverberation and equalization. The article is written by the author of this report in response to
an invitation by Dr Victor Lazzarini on behalf of the Linux Audio Conference, Maynooth, Ireland,
2011.

p4 designing synthetic reverberators in kronos

P4 discusses a specific application of generic programming to artificial reverberators. The appli-
cation of higher order functions to building complicated signal networks is demonstrated via the
case of the feedback delay network. The article is written by the author of this report.

47



48

p5 kronos vst – the programmable effect plugin

P5 introduces a new version (K3) of the Kronos compiler developed during this project. It is
demonstrated via integration with VST, a commercial technology for integrating audio processors
in various audio workstation software packages. The Kronos compiler is leveraged to provide
a programmable VST plugin, compiling user programs on the fly during the use of an audio
workstation. The article is written by the author of this report.

p6 recent developments in the kronos programming lan-
guage

P6 presents theoretical work on the K3 version of the Kronos compiler. It elaborates the multirate
signal model and presents the novel sequence specialization scheme that improves compile time
performance for large data sets. The article was written by the author of this report.



P1 K R O N O S : A D E C L A R AT I V E
M E TA P R O G R A M M I N G L A N G U A G E F O R
D I G I TA L S I G N A L P R O C E S S I N G

Vesa Norilo. Kronos: A Declarative Metaprogramming Language for Digital Signal Processing.
Computer Music Journal, 39(4), 2015

49



Kronos: A Declarative
Metaprogramming
Language for Digital
Signal Processing

Vesa Norilo
Centre for Music and Technology
University of Arts Helsinki, Sibelius
Academy
PO Box 30
FI-00097 Uniarts, Finland
vnorilo@siba.fi

Abstract: Kronos is a signal-processing programming language based on the principles of semifunctional reactive
systems. It is aimed at efficient signal processing at the elementary level, and built to scale towards higher-level tasks
by utilizing the powerful programming paradigms of “metaprogramming” and reactive multirate systems. The Kronos
language features expressive source code as well as a streamlined, efficient runtime. The programming model presented
is adaptable for both sample-stream and event processing, offering a cleanly functional programming paradigm for a
wide range of musical signal-processing problems, exemplified herein by a selection and discussion of code examples.

Signal processing is fundamental to most areas
of creative music technology. It is deployed on
both commodity computers and specialized sound-
processing hardware to accomplish transformation
and synthesis of musical signals. Programming these
processors has proven resistant to the advances in
general computer science. Most signal processors
are programmed in low-level languages, such as C,
often thinly wrapped in rudimentary C++. Such a
workflow involves a great deal of tedious detail, as
these languages do not feature language constructs
that would enable a sufficiently efficient imple-
mentation of abstractions that would adequately
generalize signal processing. Although a variety
of specialized musical programming environments
have been developed, most of these do not enable
the programming of actual signal processors, forcing
the user to rely on built-in black boxes that are
typically monolithic, inflexible, and insufficiently
general.

In this article, I argue that much of this stems
from the computational demands of real-time signal
processing. Although much of signal processing is
very simple in terms of program or data structures,
it is hard to take advantage of this simplicity in a
general-purpose compiler to sufficiently optimize
constructs that would enable a higher-level signal-
processing idiom. As a solution, I propose a highly
streamlined method for signal processing, starting
from a minimal dataflow language that can describe
the vast majority of signal-processing tasks with a

Computer Music Journal, 39:4, pp. 30–48, Winter 2015
doi:10.1162/COMJ a 00330
c© 2015 Massachusetts Institute of Technology.

handful of simple concepts. This language is a good
fit for hardware—ranging from CPUs to GPUs and
even custom-made DSP chips—but unpleasant for
humans to work in. Human programmers are instead
presented with a very high-level metalanguage,
which is compiled into the lower-level data flow.
This programming method is called Kronos.

Musical Programming Paradigms
and Environments

The most prominent programming paradigm for
musical signal processing is the unit generator
language (Roads 1996, pp. 787–810). Some examples
of “ugen” languages include the Music N family (up
to the contemporary Csound; see Boulanger 2000), as
well as Pure Data (Puckette 1996) and SuperCollider
(McCartney 2002).

The Unit Generator Paradigm

The success of the unit generator paradigm is driven
by the declarative nature of the ugen graph; the
programmer describes data flows between primitive,
easily understood unit generators.

It is noteworthy that the typical selection of
ugens in these languages is very different from the
primitives and libraries available in general-purpose
languages. Whereas languages like C ultimately
consist of the data types supported by a CPU and the
primitive operations on them, a typical ugen could
be anything from a simple mathematical operation
to a reverberator or a pitch tracker. Ugen languages

30 Computer Music Journal

50 kronos: a declarative metaprogramming language for digital signal processing



tend to offer a large library of highly specialized
ugens rather than focusing on a small orthogonal
set of primitives that could be used to express any
desired program. The libraries supplied with most
general-purpose languages tend to be written in
those languages; this is not the case with the typical
ugen language.

The Constraints of the Ugen Interpreter

I classify the majority of musical programming
environments as ugen interpreters. Such environ-
ments are written in a general-purpose programming
language, along with the library of ugens that are
available for the user. These are implemented in
a way that allows late binding composition: the
ugens are designed to be able to connect to the
inputs and outputs of other, arbitrary ugens. This
is similar to how traditional program interpreters
work—threading user programs from predefined
native code blobs—hence the term ugen interpreter.

In this model, ugens must be implemented via
parametric polymorphism: as a set of objects that
share a suitable amount of structure, to be able to
interconnect and interact with the environment,
regardless of the exact type of the ugen in ques-
tion. Dynamic dispatch is required, as the correct
signal-processing routine must be reached through
an indirect branch. This is problematic for contem-
porary hardware, as the hardware branch prediction
relies on the hardware instruction pointer: In an
interpreter, the hardware instruction pointer and
the interpreter program location are unrelated.

A relevant study (Ertl and Gregg 2007) cites
misprediction rates of 50 percent to 98 percent for
typical interpreters. The exact cost of misprediction
depends on the computing hardware and is most
often not fully disclosed. On a Sandy Bridge CPU by
Intel, the cost is typically 18 clock cycles; as a point
of reference, the chip can compute 144 floating-point
operations in 18 cycles at peak throughput. There
are state-of-the-art methods (Ertl and Gregg 2007;
Kim et al. 2009) to improve interpreter performance.
Most musical programming environments choose
instead a simple, yet reasonably effective, means
of mitigating the cost of dynamic dispatch. Audio

processing is vectorized to amortize the cost of
dynamic dispatch over buffers of data instead of
individual samples.

Consider a buffer size of 128 samples, which is
often considered low enough to not interfere in
a real-time musical performance. For a ugen that
semantically maps to a single hardware instruction,
misprediction could consume 36 percent to 53
percent of the time on a Sandy Bridge CPU, as
derived from the numbers previously stated. To
reduce the impact of this cost, the ugen should
spend more time doing useful work.

Improving the efficiency of the interpreter could
involve either increasing the buffer size further or
increasing the amount of useful work a ugen does per
dispatch. As larger buffer sizes introduce latency,
ugen design is driven to favor large, monolithic
blocks, very unlike the general-purpose primitives
most programming languages use as the starting
point, or the native instructions of the hardware.

In addition, any buffering introduces a delay
equivalent to the buffer size to all feedback connec-
tions in the system, which precludes applications
such as elementary filter design or many types of
physical modeling.

An Ousterhout Corollary

John Ousterhout’s dichotomy claims that program-
ming languages are either systems programming
languages or scripting languages (Ousterhout 1998).
To summarize, the former are statically typed, and
produce efficient programs that operate in isolation.
C is the prototypical representative of this group.
The latter are dynamically typed, less concerned
with efficiency, intended to glue together distinct
components of a software system. These are repre-
sented by languages such as bash, or Ousterhout’s
own Tcl.

The Ousterhout dichotomy is far from universally
accepted, although an interesting corollary to
musical programming can be found. Unit generators
are the static, isolated, and efficient components
in most musical programming languages. They
are typically built with languages aligned with
Ousterhout’s systems programming group. The

Norilo 31

kronos: a declarative metaprogramming language for digital signal processing 51



scripting group is mirrored by the programming
surfaces such as the patching interface described by
Miller Puckette (1988) or the control script languages
in ChucK (Wang and Cook 2003) or SuperCollider.
Often, these control languages are not themselves
capable of implementing actual signal-processing
routines with satisfactory performance, as they
focus on just acting as the glue layer between black
boxes that do the actual signal processing.

A good analysis of the tradeoffs and division
of labor between “systems” languages and “glue”
languages in the domain of musical programming
has been previously given by Eli Brandt (2002, pp.
3–4). Although the “glue” of musical programming
has constantly improved over the last decades, the
“systems” part has remained largely stagnant.

Beyond Ugens

To identify avenues for improvement, let us first ex-
amine a selection of musical programming languages
that deviate from the standard ugen interpreter
model.

Common Lisp Music: Transcompilation

Common Lisp Music (CLM, see Schottstaedt 1994)
is an implementation of the Music N paradigm
in Common Lisp. Interestingly, CLM attempts to
facilitate the writing of signal-processing routines
in Lisp, a high-level language. This is accomplished
by means of transcompilation: CLM can generate
a C-language version of a user-defined instrument,
including compiler-generated type annotations,
enabling robust optimization and code generation.

Only a narrow subset of Lisp is transcompiled
by CLM, however. This subset is not, in fact, sig-
nificantly different from low-level C—a lower level
of abstraction than in standard C++. Indeed, CLM
code examples resemble idiomatic C routines, albeit
written in S-expressions. Although the metapro-
gramming power of Lisp could well be utilized to
generate a transcompilable program from a higher-
level idiom, this has not been attempted in the
context of CLM.

Nyquist: Signals as Values

Nyquist (Dannenberg 1997) is a Lisp-based synthesis
environment that extends the XLisp interpreter
with data types and operators specific to signal
processing. The main novelty here is to treat signals
as value types, which enable user programs to
inspect, modify, and pass around audio signals
in their entirety without significant performance
penalties. Composition of signals rather than ugens
allows for a wider range of constructs, especially
regarding composition in time.

As for DSP, Nyquist remains close to the ugen
interpreter model. Signals are lazily evaluated, and
buffered to improve efficiency; the concerns here
are identical to those discussed in the section “The
Constraints of the Ugen Interpreter.” The core
processing routines are in fact written in the C
language. Nyquist presents an alternative, arguably
more apposite, model of interacting with the signal
flow, but the programmer is still constrained to
merely composing relatively monolithic routines
written in C.

As a significant implementation detail, Nyquist
utilizes automated code generation for its operators.
According to Roger Dannenberg (1997), this is
to avoid errors in the formulaic but complicated
infrastructure related to matching the static C
code to the context of the current user program—
handling mismatched channel counts, sample rates,
and timings. This could be seen as a nascent form of
metaprogramming: generation of low-level signal-
processing primitives from a higher-level description
to bypass the tedious, error-prone boilerplate code
that comes with imperative signal processing.
Nyquist does not, however, seem to make any
attempt to generalize this capability or, indeed, to
offer it to end users.

SuperCollider: Programmatic Ugen Graphs
and Parameterization

SuperCollider proposes a two-layer design, offering
the user a ugen interpreter system running as a
server process and a control scripting environment
designed for musical programming and building the

32 Computer Music Journal

52 kronos: a declarative metaprogramming language for digital signal processing



ugen graphs. The graphs themselves are interpreted.
SuperCollider offers the option of processing the
graph per sample, but performs poorly in this
configuration.

An interesting idea in SuperCollider is a form of
ugen parameterization: channel expansion. Vectors
of parameters can be applied to ugens, which then
become vectorized. This programming technique is
effectively functional polymorphism: The behavior
of the ugen is governed by the type of data fed into
it.

The key benefit is that variants of a user-defined
signal path can easily be constructed ad hoc. The
programmer does not need to go through the entire
ugen pipeline and adjust it in multiple places to
accommodate a new channel count. The system can
infer some pipeline properties from the type of input
signal; the pipeline is parameterized by the input
type—namely, channel count. This aids in reusing
an existing design in new contexts.

PWGLSynth and ChucK: Finegrained
Interpretation

PWGLSynth (Laurson and Norilo 2006) and ChucK
(Wang and Cook 2003) are implemented as ugen
interpreters, but they operate on a per-sample basis.
In PWGLSynth, this design choice results from the
desire to support a variety of physics-based models,
in which unit-delay recursion and precise signal
timings are required. ChucK also requires a high
time resolution, as it is based on the premise of
interleaving the processing of a high-level control
script and a conventional ugen graph with accurate
timing. Such a design takes a severe performance hit
from the fine-grained interpretation, but does not
prevent these systems from supporting a wide range
of synthesis and analysis tasks in real time.

Both environments feature a synchronous au-
dio graph with pull semantics, offering special
constructs for asynchronous push semantics, con-
sidered useful for audio analysis (Norilo and Laurson
2008b; Wang, Fiebrink, and Cook 2007). PWGLSynth
is best known for its close integration to the PWGL
system, including the latter’s music-notation facil-
ities. ChucK’s main contribution is to enhance the
ugen graph paradigm with an imperative control

script, with the capability to accurately time its
interventions.

Extempore/XTLang: Dynamic Code Generation

Andrew Sorensen’s Extempore has recently gained
signal-processing capabilities in the form of XTLang
(Sorensen and Gardner 2010). XTLang is a systems-
programming extension to Lisp, offering a thin
wrapper over the machine model presented by LLVM
(Lattner and Adve 2004) along with a framework
for region-based memory management. XTLang is
designed as a low-level, high-performance language,
and in many cases it requires manual data-type
annotations and memory management. The design
of Extempore/XTLang is notable in pursuing a high
degree of integration between a slower, dynamic,
high-level idiom, and an efficient low-level machine
representation. In effect, the higher-level language
can drive the XTLang compiler, generating and
compiling code on demand.

Faust: Rethinking the Fundamentals

An important example of a language designed
for and capable of implementing ugens is Faust
(Orlarey, Fober, and Letz 2009). Faust utilizes func-
tional dataflow programming to enable relatively
high-level description and composition of signal-
processing fundamentals.

The core principle behind Faust is the com-
position of signal-processing functions: “block
diagrams,” in the Faust vernacular. Primitives can
be combined in several elementary routings, in-
cluding parallel, serial, and cyclic signal paths. This
programming model discards the imperative style
in favor of a declarative description of signal paths,
allowing eloquent and compact representation of
many signal-processing algorithms.

Most importantly, Faust can compose functions
on the very lowest level, with sample granularity
and no dispatch overhead. This is possible because
Faust performs whole-program compilation, using C
as the intermediate representation of a static signal-
flow graph. A custom compiler is a significant
technical achievement, allowing Faust to overcome
the limits of interpreters as discussed previously.

Norilo 33

kronos: a declarative metaprogramming language for digital signal processing 53



Table 1. Some Musical Programming Environments

Environment Scheme Per Sample Features

CLM Transcompiler x Low-level DSP in Lisp
Nyquist Interpreter Signals as values
SuperCollider Interpreter See note Ugen graph generation
PWGLSynth Interpreter x Score integration
ChucK Interpreter x Strong timing
Extempore Interpreter/Compiler x Dynamic code generation
Faust Compiler x High-level DSP

Note: SuperCollider can use very short buffers; in practice, however, this can become
prohibitive in terms of performance.

Summary of Surveyed Environments

The environments surveyed are summarized in
Table 1. Common Lisp Music, PWGLSynth, ChucK,
Extempore, and Faust are capable of operating per
sample, making them viable candidates for the fun-
damentals of signal processing. For SuperCollider,
this capability exists in theory, but is not useful in
practice owing to low performance.

Extempore and CLM in effect wrap a C-like stack-
machine representation in an S-expression syntax.
The programming models do not differ significantly
from programming in pure C, and in many cases are
lower level than standard C++. Although Extempore
is interesting in the sense that signal processors can
be conveniently and quickly created from Lisp, it
does not seem to be designed to tackle the core issue
of signal processing in a new way.

PWGLSynth and ChucK offer a ugen graph rep-
resentation capable of operating on the sample
level. As interpreters, these systems fall far be-
low theoretical machine limits in computational
performance. The desire to achieve adequate per-
formance has likely governed the core design of
these environments—both feature large, monolithic
ugens that can only be composed in very basic
ways.

Faust is the project that is most closely aligned
with the goals of the present study. Discarding
the ugen model entirely, it is a signal-processing
language designed from the ground up for the task
of high-level representation of common DSPs with
a very high performance.

Towards Higher-Level Signal Processing

As is evident from the survey in the section “Beyond
Ugens,” solutions and formulations that address
musical programming on a higher level—those that
constitute the Ousterhoutian “glue”—are plentiful.
Their lower-level counterparts are far fewer. Only
Faust is competitive with C/C++, if one desires to
design filters, oscillators, or physical models from
scratch. The objective of the present study is to
explore and develop this particular domain.

A Look at Faust

Programming in Faust is about the composition of
block diagrams. At the leaves of its syntax tree are
functions, such as sin, cos, or 5 (interpreted as a
constant-valued function). These can be composed
using one of the five operators merge, split, sequen-
tial, parallel, or recursive composition. In terms
of a signal graph, the leaves of the Faust syntax
tree are the nodes, and the composition operators
describe the edges. The Faust syntax tree is therefore
topologically quite far removed from the actual
signal-flow graph. The programs are compact, to the
point of being terse. An example of a biquad filter
implemented in Faust is shown in Figure 1; this is
an excerpt from the Faust tutorial.

Faust is a pure functional language (Strachey
2000). Programs have no state, yet Faust is capable
of implementing algorithms that are typically
stateful, such as digital filters and delay effects.

34 Computer Music Journal

54 kronos: a declarative metaprogramming language for digital signal processing



biquad(a1,a2,b0,b1,b2) = + ˜ conv2(a1,a2) : conv3(b0,b1,b2)
with {
conv3(k0,k1,k2,x) = k0*x + k1*x’ + k2*x’’ ;
conv2(k0,k1,x) = k0*x + k1*x’ ;

};

Figure 1. Biquad filter in
Faust.

This is accomplished by lifting signal memory to
a language construct. Faust offers delay operators,
in addition to the recursive composition operator
that introduces an implicit unit delay. By utilizing
these operators, Faust functions are pure functions
of current and past inputs.

Abstraction at a more sophisticated level has
been available since Faust was enhanced with a
term-rewriting extension by Albert Gräf (2010).
Faust functions can now change their behavior
based on pattern matching against the argument.
As the arguments are block diagrams, this is a
form of functional polymorphism with regard to the
topology of signal graphs.

In summary, Faust defines a block-diagram alge-
bra, which is used to compose an audio-processing
function of arbitrary complexity. This function
describes a static signal flow graph, which can be
compiled into efficient C++ code.

Introducing Kronos

This section provides an overview of the Kronos
programming language, which is the focus of the
present study.

Designing for Code Optimization

Ideally, specification of a programming language
should be separated from its implementation,
delegating all concerns of time and space efficiency
to the compiler. In practice, this is not always
the case. In the section “The Constraints of the
Ugen Interpreter,” I proposed that concerns with
implementation efficiency encourage ugen design
that is detrimental to the language. A more widely
acknowledged example is the case of tail-call
optimization that many functional languages, such

as Scheme (Abelson et al. 1991), require. The
idiomatic programming style in Scheme relies on
the fact that the compiler can produce tail-recursive
functions that operate in constant space.

Because signal processing is a very narrow,
focused programming task, design for optimization
can be more radical.

The first assumption I propose is that multirate
techniques are essential for optimizing the effi-
ciency of signal processors. Most systems feature
a distinction between audio rate and control rate.
I propose that update rate should be considered to
be a task for the optimizing compiler. It should be
possible to use similar signal semantics for all the
signals in the system, from audio to control to MIDI
and the user interface, to enable an universal signal
model (Norilo and Laurson 2008a).

The second assumption is that for signal process-
ing we often desire a higher level of expressivity and
abstraction when describing the signal-processor
topology than during processing itself. This assump-
tion is supported by the fact that environments like
Faust, ChucK, and SuperCollider, among others,
divide the task of describing signal processors into
graph generation and actual processing. I propose
that this division be considered at the earliest stages
of language design, appropriately formalized, and
subsequently exploited in optimization.

The Dataflow Language

The starting point of the proposed design is a
dataflow language that is minimal in the sense of be-
ing very amenable to compiler optimization, but still
complete enough to represent the majority of typical
signal-processing tasks. For the building blocks,
we choose arithmetic and logic on elementary
data types, function application, and algebraic type
composition. The language will be represented

Norilo 35

kronos: a declarative metaprogramming language for digital signal processing 55



by a static signal graph, implying determinism
that is useful for analysis and optimization of the
equivalent machine code.

The nodes of the graph represent operators, and
the edges represent signal transfer. The graph is
functionally pure, which means that functions
cannot induce observable side effects. As in Faust,
delay and signal memory is included in the dataflow
language as a first-class operator. The compiler rei-
fies the delays as stateful operations. This restricted
use of state allows the language to be referentially
transparent (Strachey 2000) while providing efficient
delay operations: the user faces pure functions of
current and past inputs, while the machine executes
a streamlined ring-buffer operation.

The language semantics are completed by allow-
ing cycles in the signal flow, as long as each cycle
includes at least one sample of delay. This greatly
enhances the capability of the dataflow language to
express signal processors, as feedback-delay routing
is extremely commonplace. If the Kronos language is
represented textually, cyclic expressions result from
symbols defined recursively in terms of each other;
in visual form, the cycles are directly observable in
the program patch.

The deterministic execution semantics and refer-
ential transparency allow the compiler to perform
global dataflow analysis on entire programs. The
main use of this facility is automated factorization
of signal rates: The compiler can determine the
required update rates of each pure function in the
system by observing the update rates of its inputs.
Signal sources can be inserted into the dataflow
graph as external inputs. In compilation, these
become the entry points that drive the graph com-
putation. One such entry point is the audio clock;
another could represent a slider in the user interface.
This factorization is one of the main contributions
of the Kronos project.

The dataflow principle behind what is described
here is classified by Peter Van Roy (2009) as a
discrete reactive system. It will respond to a well-
defined series of discrete input events with another
well-defined series of discrete output events, which
is true for any Kronos program or fragment of
one.

The Metalanguage

As the reader may observe, the dataflow language
as described here greatly resembles the result of a
function composition written in Faust. Such a static
signal graph is no doubt suitable for optimizing
compilers; however, it is not very practical for
a human programmer to write directly. As an
abstraction over the static signal graph, Faust offers
a block-diagram algebra and term rewriting (Gräf
2010).

For Kronos, I propose an alternative that I argue
is both simpler and more comprehensive. Instead
of the dataflow language, the programmer works
in a metalanguage. The main abstraction offered
by the metalanguage is polymorphic function
application, implemented as System Fω (Barendregt
1991): The behavior and result type of a function
are a function of argument type, notably, argument
value is not permitted to influence the result type.
The application of polymorphic functions is guided
by type constraints—the algebraic structure and
semantic notation of signals can be used to drive
function selection. This notion is very abstract; to
better explain it, in the section “Case Studies” I
show how it can encode a block-diagram algebra,
algorithmic routing, and techniques of generic
programming.

In essence, the metalanguage operates on types
and the dataflow language operates on values. The
metalanguage is used to construct a statically typed
dataflow graph. The restrictions of System Fω ensure
that the complexity of functional polymorphism can
be completely eliminated when moving from the
metalanguage to the dataflow language; any such
complexity is in the type-system computations at
compile time—it is essentially free during the crit-
ical real-time processing of data flow. This enables
the programmer to fully exploit very complicated
polymorphic abstractions in signal processing, with
a performance similar to low-level C, albeit with
considerable restrictions.

Because values do not influence types, depen-
dent types cannot be expressed. As type-based
polymorphism is the main control-flow mecha-
nism, runtime values are, in effect, shut out from
influencing program flow.

36 Computer Music Journal

56 kronos: a declarative metaprogramming language for digital signal processing



Table 2. Kronos Language Features

Paradigm Functional
Evaluation Strict
Typing discipline Static, strong, derived
Compilation Static, just in time
Usage Library, repl, command line
Backend LLVM (Lattner and Adve 2004)
Platforms Windows, Mac OSX, Linux
License GPL3
Repository https://bitbucket.org/vnorilo/k3

This restriction may seem crippling to a pro-
grammer experienced in general-purpose languages,
although a static signal graph is a feature in many
successful signal-processing systems, including Pure
Data and Faust.

I argue that the System Fω is an apposite formal-
ization for the division of signal processing into
graph generation and processing. It cleanly separates
the high-level metaprogramming layer and low-level
signal-processing layer into two distinct realms: that
of types, and that of values.

A summary of the characteristics of the Kronos
language is shown in Table 2. For a detailed dis-
cussion of the theory, the reader is referred to prior
publications (Norilo 2011b, 2013).

Case Studies

This section aims to demonstrate the programming
model described in the earlier section “Towards
Higher-Level Signal Processing,” via case studies
selected for each particular aspect of the design.
The examples are not designed to be revolutionary;
rather, they are selected as a range of representative
classic problems in signal processing. I wish to stress
that the examples are designed to be self-contained.
Although any sustainable programming practice
relies on reusable components, the examples here
strive to demonstrate how proper signal-processing
modules can be devised relatively easily from ex-
tremely low-level primitives, without an extensive
support library, as long as the language provides
adequate facilities for abstraction.

Polymorphism, State, and Cyclic Graphs

A simple one-pole filter implemented in Kronos
is shown in Figure 2. This example demonstrates
elementary type computations, delay reification,
and cyclic signal paths. The notable details occur in
the unit-delay operator z-1. This operator receives
two parameters, a forward initialization path and
the actual signal path.

Notably, the signal path in this example is cyclic.
This is evident in how the definitions of y0 and
y1 are mutually recursive. Please note that y1 is
not a variable or a memory location: It is a symbol
bound to a specific node in the signal graph. Kronos
permits cyclic graphs, as long as they feature a delay
operator. The mapping of this cycle to efficient
machine code is the responsibility of the dataflow
compiler, which produces a set of assignment side
effects that fulfill the desired semantics.

The forward initialization path is used to describe
the implicit history of the delay operator before any
input has been received. Instead of being expressed
directly as a numerical constant, the value is derived
from the pole parameter. This causes the data
type of the delay path to match that of the pole
parameter. If the user chooses to utilize double
precision for the pole parameter, the internal data
paths of the filter are automatically instantiated in
double precision. The input might still be in single
precision; by default, the runtime library would
inject a type upgrade into the difference equation.
The upgrade semantics are based on functional
polymorphism, and they are defined in source form
instead of being built into the compiler.

User-defined types can also be used for the
pole parameter, provided that suitable multipli-
cation and subtraction operators and implicit type
conversions exist. The runtime library provides a
complex number implementation (again, in source
form) that provides basic arithmetic and speci-
fies an implicit type coercion from real values: if
used for the pole, the filter becomes a complex
resonator with complex-valued output. This type-
based polymorphism can be seen as a generalization
of ugen parameterization—for example, the way
SuperCollider ugens can adapt to incoming channel
counts.

Norilo 37

kronos: a declarative metaprogramming language for digital signal processing 57



Filter(x0 pole) {
y1 = z-1( (pole - pole) y0 )
; y1 i s i n i t i a l l y zero , subsequently delayed y0 .
; The i n i t i a l value of zero i s expressed as ’ pole − pole ’ to ensure
; that the feedback path type matches the pole type .

y0 = x0 - pole * y1
; Compute y0 , the output .

Filter = y0
; This i s the f i l t e r output .

}

; Straightforward single−precis ion one−pole f i l t e r :
; example1 = F i l t e r ( s i g 0 .5 )
; Upgrade the signal path to double precis ion :
; example2 = F i l t e r ( s i g 0.5d)

; Use as a resonator via a complex pole and reduction to real part .
Resonator(sig w radius) {

; ’ Real ’ and ’ Polar ’ are functions in namespace ’Complex ’
Resonator = Complex:Real(Filter(sig Complex:Polar(w radius)))

}

Figure 2. One-pole filter.

Figure 2

For a more straightforward implementation, the
complicated type computations can be ignored.
Declaring the unit delay as y1 = z-1(0 y0) would
yield a filter that was fixed to single-precision
floating point; different types for the input signal
or the pole would result in a type error at the z-1
operator. This approach is likely more suitable for
beginning programmers, although they should have
little difficulty in using (as opposed to coding) the
generic version.

An implementation of a biquad filter is shown in
Figure 3. This filter is identical to the Faust version
in Figure 1. Because Kronos operates on signal values
instead of block diagrams, the syntax tree of this
implementation is identical to the signal flow graph.
This is arguably easier to understand than the Faust
version.

Higher-Order Functions in Signal Processing

Polymorphism is a means of describing something
more general than a particular filter implementation.

Biquad(sig b0 b1 b2 a1 a2) {
zero = sig - sig

; feedback section
y0 = sig - y1 * a1 - y2 * a2
y1 = z-1(zero y0)
y2 = z-1(zero y1)

; feedforward section
Biquad = y0 * b0 + y1 * b1 + y2 * b2

}

Figure 3. Biquad filter,
based on the realization
known as Direct Form II
(Smith 2007).

Figure 3

For instance, the previous example described the
principle of unit-delay recursion through a feedback
coefficient with different abstract types.

An even more fundamental principle underlies
this filter model and several other audio processes:
That of recursive composition of unit delays. This
can be described in terms of a binary function of
the feedforward and feedback signals into an output
signal.

38 Computer Music Journal

58 kronos: a declarative metaprogramming language for digital signal processing



; Routes a function output back to i t s f i r s t argument through a unit delay .
Recursive(sig binary-func) {

state = binary-func(z-1(sig - sig state) sig)
Recursive = state

}

Filter2(sig pole) {
; Lambda arrow ’=> ’ constructs an anonymous function : the arguments
; are on the l e f t hand side , and the body i s on the r ight hand side .
dif-eq = (y1 x0) => x0 - pole * y1
; onepole f i l t e r i s a recursive composition of a simple multiply−add expression .
Filter2 = Recursive( sig dif-eq )

}

Buzzer(freq) {
; Local function to wrap the phasor .
wrap = x => x - Floor(x)
; Compose a buzzer from a recurs ive ly composed increment wrap .
Buzzer = Recursive( freq (state freq) =>

wrap(state + Frequency-Coefficient(freq Audio:Signal(0))) )
}

; example usage
; F i l t e r 2 ( Buzzer (440) 0 .5 )

Figure 4. Generic
recursion.

Recursive Routing Metafunction

In Kronos, the presence of first-class functions—
or functions as signals—allows for higher-order
functions. Such a function can be designed to wrap a
suitable binary function in a recursive composition
as previously described. The implementation of
this metafunction is given in Figure 4, along with
example usage to reconstruct the filter from Figure 2
as well as a simple phasor, used here as a naive
sawtooth oscillator. This demonstrates how to
implement a composition operator, such as those
built into Faust, by utilizing higher-order functions.

The recursive composition function is an example
of algorithmic routing. It is a function that generates
signal graphs according to a generally useful routing
principle. In addition, parallel and serial routings
are ubiquitous, and well suited for expression in the
functional style.

Schroeder Reverberator

Schroeder reverberation is a classic example of
a signal-processing problem combining parallel
and serial routing (Schroeder 1969). An example

implementation is given in Figure 5 along with
routing metafunctions, Map and Fold. Complete
implementations are shown for demonstration
purposes—the functions are included in source form
within the runtime library.

Further examples of advanced reverberators
written in Kronos can be found in an earlier paper
by the author (Norilo 2011a).

Sinusoid Waveshaper

Metaprogramming can be applied to implement
reconfigurable signal processors. Consider a poly-
nomial sinusoid waveshaper; different levels of
precision are required for different applications.
Figure 6 demonstrates a routine that can generate a
polynomial of any order in the type system.

In summary, the functional paradigm enables
abstraction and generalization of various signal-
processing principles such as the routing algorithms
described earlier. The application of first-class
functions allows flexible program composition at
compile time without a negative impact on runtime
performance.

Norilo 39

kronos: a declarative metaprogramming language for digital signal processing 59



Fold(func data) {
; Extract two elements and the t a i l from the l i s t .
(x1 x2 xs) = data
; I f t a i l i s empty , resu l t i s ’ func ( x1 x2 ) ’
; otherwise fold ’x1 ’ and ’x2 ’ into a new l i s t head and recurs ive ly ca l l function .
Fold = Nil?(xs) : func(x1 x2)

Fold(func func(x1 x2) xs)
}

; Para l l e l routing i s a functional map.
Map(func data) {

; For an empty l i s t , return an empty l i s t .
Map = When(Nil?(data) data)
; Otherwise s p l i t the l i s t to head and ta i l ,
(x xs) = data
; apply mapping function to head , and recurs ive ly ca l l function .
Map = (func(x) Map(func xs))

}

; Simple comb f i l t e r .
Comb(sig feedback delay) {

out = rbuf(sig - sig delay sig + feedback * out)
Comb = out

}

; Allpass comb f i l t e r .
Allpass-Comb(sig feedback delay) {

vd = rbuf(sig - sig delay v)
v = sig - feedback * vd
Allpass-Comb = feedback * v + vd

}

Reverb(sig rt60) {
; L is t of comb f i l t e r delay times for 44.1 kHz.
delays = [ #1687 #1601 #2053 #2251 ]
; Compute rt60 in samples .
rt60smp = Rate-of( sig ) * rt60
; A comb f i l t e r with the feedback c o e f f i c i e n t derived from delay time .
rvcomb = delay => Comb(sig Math:Pow( 0.001 delay / rt60smp ) delay)
; Comb f i l t e r bank and sum from the l i s t of delay times .
combs-sum = Fold( (+) Map( rvcomb delays ) )
; Cascaded al lpass f i l t e r s as a fold .
Reverb = Fold( Allpass-Comb [combs-sum (0.7 #347) (0.7 #113) (0.7 #41)] )

}

Figure 5. Algorithmic
routing.

Multirate Processing: FFT

Fast Fourier transform (FFT)–based spectral analysis
is a good example of a multirate process. The signal

is transformed from an audio-rate sample stream
to a much slower and wider stream of spectrum
frames. Such buffered processes can be expressed
as signal-rate decimation on the contents of ring

40 Computer Music Journal

60 kronos: a declarative metaprogramming language for digital signal processing



Horner-Scheme(x coefficients) {
Horner-Scheme = Fold((a b) => a + x * b coefficients)

}

Pi = #3.14159265359

Cosine-Coefs(order) {
; Generate next exp ( x ) c o e f f i c i e n t from the previous one .
exp-iter = (index num denom) => (

index + #1 ; next c o e f f i c i e n t index
num * #2 * Pi ; next numerator
denom * index) ; next denominator

flip-sign = (index num denom) => (index Neg(num) denom)
; Generate next cos ( pi w) c o e f f i c i e n t from the previous one .
sine-iter = x => flip-sign(exp-iter(exp-iter(x)))
; Generate ’ order ’ c o e f f i c i e n t s .
Cosine-Coefs = Algorithm:Map(

(index num denom) => (num / denom)
Algorithm:Expand(order sine-iter (#2 #-2 * Pi #1)))

}

Cosine-Shape(x order) {
x1 = x - #0.25
Cosine-Shape = x1 * Horner-Scheme(x1 * x1 Cosine-Coefs(order))

}

Figure 6. Sinusoid
waveshaper.

buffers, with subsequent transformations. Figure 7
demonstrates a spectral analyzer written in Kronos.
For simplicity, algorithmic optimization for real-
valued signals has been omitted. The FFT, despite
the high-level expression, performs similarly to a
simple nonrecursive C implementation. It cannot
compete with state-of-the-art FFTs, however.

Because the result of the analyzer is a signal con-
sisting of FFT frames at a fraction of the audio rate,
the construction of algorithms such as overlap-add
convolution or FFT filtering is easy to accomplish.

Polyphonic Synthesizer

The final example is a simple polyphonic FM
synthesizer equipped with a voice allocator, shown
in Figure 8. This is intended as a demonstration of
how the signal model and programming paradigm
can scale from efficient low-level implementations
upwards to higher-level tasks.

The voice allocator is modeled as a ugen receiving
a stream of MIDI data and producing a vector of

voices, in which each voice is represented by a
MIDI note number, a gate signal, and a “voice age”
counter. The allocator is a unit-delay recursion
around the vector of voices, utilizing combinatory
logic to lower the gate signals for any released
keys and insert newly pressed keys in place of the
least important of the current voices. The allocator
is driven by the MIDI signal, so each incoming
MIDI event causes the voice vector to update. This
functionality depends on the compiler to deduce
data flows and provide unit-delay recursion on the
MIDI stream.

To demonstrate the multirate capabilities of
Kronos, the example features a low-frequency
oscillator (LFO) shared by all the voices. This LFO
is just another FM operator, but its update rate
is downsampled by a factor of krate. The LFO
modulates the frequencies logarithmically. This
is contrived, but should demonstrate the effect
of compiler optimization of update rates, since
an expensive power function is required for each
frequency computation. Table 3 displays three

Norilo 41

kronos: a declarative metaprogramming language for digital signal processing 61



Stride-2(Xs) {
; Remove a l l elements of Xs with odd indices .
Stride-2 = []
Stride-2 = When(Nil?(Rest(Xs)) [First(Xs)])
(x1 x2 xs) = Xs
Stride-2 = (x1 Recur(xs))

}

Cooley-Tukey(dir Xs) {
Use Algorithm
N = Arity(Xs) ; FFT size
sub = ’Cooley-Tukey(dir _)
even = sub(Stride-2(Xs)) ; compute even sub−FFT
odd = sub(Stride-2(Rest(Xs))) ; compute odd sub−FFT

; Compute the twiddle factor fo r radix−2 FFT .
twiddle-factor = Complex:Polar((dir * Math:Pi / N) * #2 #1) * 1
; Apply twiddle factor to the odd sub−FFT .
twiddled = Zip-With(Mul odd Expand(N / #2 (* twiddle-factor) Complex:Cons(1 0)))

(x1 x2 _) = Xs

Cooley-Tukey =
N < #1 : Raise("Cooley-Tukey FFT requires a power-of-two array input")
N == #1 : [First(Xs)] ; terminate FFT recursion
; Recursively ca l l function and recombine sub−FFT resu l t s .

Concat(
Zip-With(Add even twiddled)
Zip-With(Sub even twiddled))

}

Analyzer(sig N overlap) {
; Gather ’N’ frames in a buffer .
(buf i out) = rcsbuf(0 N sig)
; Reduce sample rate of ’ buf ’ by factor of (N / overlap ) r e la t ive to ’ sig ’ .
frame = Reactive:Downsample(buf N / overlap)
; Compute forward FFT on each analysis frame .
Analyzer = Cooley-Tukey(#1 frame)

}

Figure 7. Spectrum
analyzer.

benchmarks of the example listing with different
control rate settings on an Intel Core i7-4500U at
2.4GHz. With control rate equaling audio rate, the
synthesizer is twice as expensive to compute as with
a control rate set to 8. The benefit of lowering the
control rate becomes marginal after about 32. This
demonstrates the ability of the compiler to deduce
data flows and eliminate redundant computation—

note that the only change was to the downsampling
factor of the LFO.

Discussion

In this section, I discuss Kronos in relation to prior
work and initial user reception. Potential future
work is also identified.

42 Computer Music Journal

62 kronos: a declarative metaprogramming language for digital signal processing



Package Polyphonic {
Prioritize-Held-Notes(midi-bytes voices) {

choose = Control-Logic:Choose
(status note-number velocity) = midi-bytes
; K i l l note number i f event i s note o f f or note on with zero velocity .
kill-key = choose(status == 0x80 | (status == 0x90 & velocity == 0i)

note-number -1i)
; New note number i f event i s note on and has nonzero velocity .
is-note-on = (status == 0x90 & velocity > 0i)
; A constant speci fy ing highest possible p r i o r i t y value .
max-priority = 2147483647i
; Lower gate and reduce p r i o r i t y fo r released voice .
with-noteoff = Map((p k v) => (p - (max-priority & (k == kill-key))

k
v & (k != kill-key))
voices)

; Find oldest voice by se lect ing lowest p r i o r i t y .
lowest-priority = Fold(Min Map(First voices))
; Inser t new note .
Prioritize-Held-Notes =

Map((p k v) => choose((p == lowest-priority) & is-note-on
(max-priority note-number velocity)
(p - 1i k v))

with-noteoff)
}

Allocator(num-voices allocator midi-bytes) {
; Create i n i t i a l voice al location with running p r i o r i t i e s so that the al locator
; always sees exactly one voice as the oldest voice .
voice-init = Algorithm:Expand(num-voices (p _ _) => (p - 1i 0i 0i) (0i 0i 0i))
; Generate and clock the voice al locator loop from the MIDI stream .
old-voices = z-1(voice-init Reactive:Resample(new-voices midi-bytes))
; Perform voice al location whenever the MIDI stream ticks .
new-voices = allocator(midi-bytes old-voices)
Allocator = new-voices

}
}

Figure 8. Polyphonic
synthesizer (continued on
next page).

Kronos and Faust

Among existing programming environments, Faust
is, in principle, closest to Kronos. The environments
share the functional approach. Faust has novel block-
composition operands that are powerful but perhaps
a little foreign syntactically to many users. Kronos
emphasizes high-level semantic metaprogramming
for block composition.

Kronos programs deal with signal values, whereas
Faust programs deal with block diagrams. The

former have syntax trees that correspond one-
to-one with the signal flow, and the latter are
topologically very different. I argue that the cor-
respondence is an advantage, especially if a visual
patching environment is used (Norilo 2012). If
desired, the Kronos syntax can encode block-
diagram algebra with higher-order functions,
down to custom infix operators. Faust can also
encode signal-flow topology by utilizing term
rewriting (Gräf 2010), but only in the feedforward
case.

Norilo 43

kronos: a declarative metaprogramming language for digital signal processing 63



; −−− Synthesizer −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FM-Op(freq amp) {

; apply sinusoid waveshaping to a sawtooth buzzer
FM-Op = amp * Approx:Cosine-Shape(Abs(Buzzer(freq) - 0.5) #5)

}

FM-Voice(freq gate) {
; attack and decay slew per sample
(slew+ slew-) = (0.003 -0.0001)
; upsample gate to audio rate
gate-sig = Audio:Signal(gate)
; slew l imiter as a recursive composition over cl ipping the value d i f f e r e n t i a l
env = Recursive( gate-sig (old new) => old + Max(slew- Min(slew+ new - old)) )
; FM modulator osc
mod = FM-Op(freq freq * 8 * env)
; FM c a r r i e r osc
FM-Voice = FM-Op(freq + mod env)

}

; −−− Test bench −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Synth(midi-bytes polyphony krate) {

; transform MIDI stream into a bank of voices
voices = Polyphonic:Allocator( polyphony

Polyphonic:Prioritize-Held-Notes
midi-bytes )

lfo = Reactive:Downsample(FM-Op(5.5 1) krate)
; make a simple synth from the voice vector
Synth = Fold((+)

Map((age key gate) => FM-Voice(
440 * Math:Pow(2 (key - 69 + lfo * gate / 256) / 12) ; f req
gate / 128) ; amp

voices))
}

Figure 8. Polyphonic
synthesizer (continued
from previous page).

Kronos is designed as a System Fω compiler,
complete with a multirate scheme capable of
handling event streams as well. The multirate
system in Faust (Jouvelot and Orlarey 2011) is a
recent addition and less general, supporting “slow”
signals that are evaluated once per block, audio
signals, and, more recently, up- and downsampled
versions of audio signals. The notion of an event
stream does not exist as of this writing.

The strengths of Faust include the variety of sup-
ported architectures (Fober, Orlarey, and Letz 2011),
generation of block-diagram graphics, symbolic
computation, and mathematical documentation.
The compiler has also been hardened with major

projects, such as a port of the Synthesis Toolkit
(Michon and Smith 2011).

Kronos and Imperative Programming

Poing Imperatif by Kjetil Matheussen (2011) is a
source-to-source compiler that is able to lower
object-oriented constructs into the Faust language.
Matheusen’s work can be seen as a study of iso-
morphisms between imperative programming and
Faust. Many of his findings apply directly to Kronos
as well. Programs in both languages have state,
but it is provided as an abstract language construct

44 Computer Music Journal

64 kronos: a declarative metaprogramming language for digital signal processing



Table 3. Impact of Update
Rate Optimization

krate μsec per 1,024 Samples

1 257
2 190
8 127

32 118
128 114

and reified by the compiler. Poing Imperatif low-
ers mutable fields in objects to feedback-delay
loops—constructs that represent such abstract state.
Essentially, a tick of a unit-delay signal loop is
equivalent to a procedural routine that reads and
writes an atom of program state. The key difference
from a general-purpose language is that Kronos and
Faust enforce locality of state—side effects cannot
be delegated to subroutines. Matheusen presents
a partial workaround: Subroutines describe side
effects rather than perform them, leaving the final
mutation to the scope of the state.

The reactive capabilities of Kronos present a new
aspect in the comparison with object-oriented pro-
gramming. Each external input to a Kronos program
has a respective update routine that modifies some
of the program state. The inputs are therefore anal-
ogous to object methods. A typical object-oriented
implementation of an audio filter would likely
include methods to set the high-level design param-
eters such as corner frequency and Q, and a method
for audio processing. The design-parameter interface
would update coefficients that are internal to the
filter, which the audio process then uses. Kronos
generates machine code that looks very similar to
this design. The implicitly generated memory for the
signal-clock boundaries contains the coefficients:
intermediate results of the signal path that depend
only on the design parameters.

At the source level, the object-oriented program
spells out the methods, signal caches, and delay
buffers. Kronos programs declare the signal flow,
leaving method factorization and buffer allocation to
the compiler. This is the gist of the tradeoff offered:
Kronos semantics are more narrowly defined,
allowing the programmer to concentrate exclusively

on signal flow. This is useful when the semantic
model suits the task at hand; but if it does not, the
language is not as flexible as a general-purpose one.

User Evaluation

I have been teaching the Kronos system for two
year-long courses at the University of Arts Helsinki,
as well as intensive periods in the Conservatory
of Cosenza and the National University of Ireland,
Maynooth. In addition, I have collected feedback
from experts at international conferences and
colloquia, for example, at the Institut de Recherche
et de Coordination Acoustique/Musique (IRCAM)
in Paris and the Center for Computer Research
in Music and Acoustics (CCRMA) at Stanford
University.

Student Reception

The main content of my Kronos teaching consists of
using the visual patcher and just-in-time compiler
in building models of analog devices, in the design of
digital instruments, and in introducing concepts of
functional programming. The students are majors in
subjects such as recording arts or electronic music.
Students generally respond well to filter implemen-
tation, as the patches correspond very closely to
textbook diagrams. They respond well to the idea
of algorithmic routing, many expressing frustration
that it is not more widely available, but they struggle
to apply it by themselves. Many are helped by termi-
nology from modular synthesizers, such as calling
Map a bank and Reduce a cascade. During the longer
courses, students have implemented projects, such
as AudioUnit plug-ins and mobile sound-synthesis
applications.

Expert Reception

Among the expert audience, Kronos has attracted
the most positive response from engineers and
signal-processing researchers. Composers seem to
be less interested in the problem domain it tackles.
Many experts have considered the Kronos syntax to
be easy to follow and intuitive, and its compilation

Norilo 45

kronos: a declarative metaprogramming language for digital signal processing 65



speed and performance to be excellent. A common
doubt is with regard to the capability of a static
dataflow graph to express an adequate number of
algorithms. Adaptation of various algorithms to the
model is indeed an ongoing research effort.

Recently, a significant synergy was discovered
between the Kronos dataflow language and the
WaveCore, a multicore DSP chip designed by
Verstraelen, Kuper, and Smit (2014). The dataflow
language closely matches the declarative WaveCore
language, and a collaborative effort is ongoing to
develop Kronos as a high-level language for the
WaveCore chip.

Current State

Source code and release files for the Kronos compiler
are available at https://bitbucket.org/vnorilo/k3.
The code has been tested on Windows 8, Mac OS X
10.9, and Ubuntu Linux 14, for which precompiled
binaries are available. The repository includes
the code examples shown in this article. Both
the compiler and the runtime library are publicly
licensed under the GNU General Public License,
Version 3.

The status of the compiler is experimental.
The correctness of the compiler is under ongoing
verification and improvement by means of a test
suite that exercises a growing subset of possible use
cases. The examples presented in this article are a
part of the test suite.

Future Work

Finally, I discuss the potential for future research.
The visual front end is especially interesting in the
context of teaching and learning signal processing,
and core language enhancements could further
extend the range of musical programming tasks
Kronos is able to solve well.

Visual Programming and Learnability

Kronos is designed from the ground up to be
adaptable to visual programming. In addition to

the core technology, supporting tools must be built
to truly enable it. The current patcher prototype
includes some novel ideas for making textual and
visual programming equally powerful (Norilo 2012).

Instantaneous visual feedback in program debug-
ging, inspection of signal flow, and instrumentation
are areas where interesting research could be carried
out. Such facilities would enhance the system’s
suitability for pedagogical use.

Core Language Enhancements

Type determinism (as per System Fω) and early
binding are key to efficient processing in Kronos.
It is acknowledged, however, that they form a
severe restriction on the expressive capability of the
dataflow language.

Csound is a well-known example of an envi-
ronment where notes in a score and instances of
signal processors correspond. For each note, a signal
processor is instantiated for the required duration.
This model cleanly associates the musical object
with the program object.

Such a model is not immediately available in
Kronos. The native idiom for dynamic polyphony
would be to generate a signal graph for the maximum
number of voices and utilize a dynamic clock to
shut down voices to save processing time. This
is not as neat as the dynamic allocation model,
because it forces the user to specify a maximum
polyphony.

More generally, approaches to time-variant pro-
cesses on the level of the musical score are inter-
esting; works such as Eli Brandt’s (2002) Chronic
offer ideas on how to integrate time variance and
the paradigm of functional programming. Dynamic
mutation could be introduced into the dataflow
graph by utilizing techniques from class-based
polymorphic languages, such as type erasure on
closures.

In its current state, Kronos does not aim to
replace high-level composition systems such as
Csound or Nyquist (Dannenberg 1997). It aims to
implement the bottom of the signal-processing stack
well, and thus could be a complement to a system
operating on a higher ladder of abstraction. Both of
the aforementioned systems could, for example, be

46 Computer Music Journal

66 kronos: a declarative metaprogramming language for digital signal processing



extended to drive the Kronos just-in-time compiler
for their signal-processing needs.

Conclusion

This article has presented Kronos, a language
and a compiler suite designed for musical signal
processing. Its design criteria are informed by the
requirements of real-time signal processing fused
with a representation on a high conceptual level.

Some novel design decisions enabled by the
DSP focus are whole-program type derivation and
compile-time computation. These features aim to
offer a simple, learnable syntax while providing
extremely high performance. In addition, the ideas
of ugen parameterization and block-diagram algebra
were generalized and described in the terms of types
in the System Fω. Abstract representation of state via
signal delays and recursion bridges the gap between
pure functions and stateful ugens.

All signals are represented by a universal signal
model. The system allows the user to treat events,
control, and audio signals with unified semantics,
with the compiler providing update-rate optimiza-
tions. The resulting machine code closely resembles
that produced by typical object-oriented strategies
for lower-level languages, while offering a very
high-level dataflow-based programming model on
the source level. As such, the work can be seen as
a study of formalizing a certain set of programming
practices for real-time signal-processing code, and
providing a higher-level abstraction that conforms
to them. The resulting source code representation
is significantly more compact and focused on the
essential signal flow—provided that the problem at
hand can be adapted to the paradigm.

References

Abelson, H., et al. 1991. “Revised Report on the Algorith-
mic Language Scheme.” ACM SIGPLAN Lisp Pointers
4(3):1–55.

Barendregt, H. 1991. “Introduction to Generalized Type
Systems.” Journal of Functional Programming 1(2):124–
154.

Boulanger, R. 2000. The Csound Book. Cambridge,
Massachusetts: MIT Press.

Brandt, E. 2002. “Temporal Type Constructors for
Computer Music Programming.” PhD disssertation,
Carnegie Mellon University, School of Computer
Science.

Dannenberg, R. B. 1997. “The Implementation of Nyquist,
a Sound Synthesis Language.” Computer Music Journal
21(3):71–82.

Ertl, M. A., and D. Gregg. 2007. “Optimizing Indirect
Branch Prediction Accuracy in Virtual Machine Inter-
preters.” ACM TOPLAS Notices 29(6):37.

Fober, D., Y. Orlarey, and S. Letz. 2011. “Faust Architec-
tures Design and OSC Support.” In Proceedings of the
International Conference on Digital Audio Effects, pp.
213–216.

Gräf, A. 2010. “Term Rewriting Extensions for the Faust
Programming Language.” In Proceedings of the Linux
Audio Conference, pp. 117–122.

Jouvelot, P., and Y. Orlarey. 2011. “Dependent Vector
Types for Data Structuring in Multirate Faust.” Com-
puter Languages, Systems and Structures 37(3):113–131.

Kim, H., et al. 2009. “Virtual Program Counter (VPC)
Prediction: Very Low Cost Indirect Branch Prediction
Using Conditional Branch Prediction Hardware.” IEEE
Transactions on Computers 58(9):1153–1170.

Lattner, C., and V. Adve. 2004. “LLVM: A Compila-
tion Framework for Lifelong Program Analysis and
Transformation.” International Symposium on Code
Generation and Optimization 57(c):75–86.

Laurson, M., and V. Norilo. 2006. “From Score-Based
Approach towards Real-Time Control in PWGLSynth.”
In Proceedings of the International Computer Music
Conference, pp. 29–32.

Matheussen, K. 2011. “Poing Impératif: Compiling
Imperative and Object Oriented Code to Faust.” In
Proceedings of the Linux Audio Conference, pp. 55–60.

McCartney, J. 2002. “Rethinking the Computer Music
Language: SuperCollider.” Computer Music Journal
26(4):61–68.

Michon, R., and J. O. Smith. 2011. “Faust-STK: A Set
of Linear and Nonlinear Physical Models for the
Faust Programming Language.” In Proceedings of the
International Conference on Digital Audio Effects, pp.
199–204.

Norilo, V. 2011a. “Designing Synthetic Reverberators in
Kronos.” In Proceedings of the International Computer
Music Conference, pp. 96–99.

Norilo, V. 2011b. “Introducing Kronos: A Novel Approach
to Signal Processing Languages.” In Proceedings of the
Linux Audio Conference, pp. 9–16.

Norilo 47

kronos: a declarative metaprogramming language for digital signal processing 67



Norilo, V. 2012. “Visualization of Signals and Algo-
rithms in Kronos.” In Proceedings of the Interna-
tional Conference on Digital Audio Effects, pp. 15–
18.

Norilo, V. 2013. “Recent Developments in the Kronos
Programming Language.” In Proceedings of the In-
ternational Computer Music Conference, pp. 299–
304.

Norilo, V., and M. Laurson. 2008a. “A Unified Model
for Audio and Control Signals in PWGLSynth.” In
Proceedings of the International Computer Music
Conference, pp. 13–16.

Norilo, V., and M. Laurson. 2008b. “Audio Analy-
sis in PWGLSynth.” In Proceedings of the Interna-
tional Conference on Digital Audio Effects, pp. 47–
50.

Orlarey, Y., D. Fober, and S. Letz. 2009. “Faust: An
Efficient Functional Approach to DSP Programming.”
In G. Assayag and A. Gerszo, eds. New Computational
Paradigms for Music. Paris: Delatour, IRCAM, pp.
65–97.

Ousterhout, J. K. 1998. “Scripting: Higher-Level Pro-
gramming for the 21st Century.” Computer 31(3):23–
30.

Puckette, M. 1988. “The Patcher.” In Proceedings of
International Computer Music Conference, pp. 420–
429.

Puckette, M. 1996. “Pure Data: Another Integrated
Computer Music Environment.” In Proceedings of
the International Computer Music Conference, pp.
269–272.

Roads, C. 1996. The Computer Music Tutorial. Cambridge,
Massachusetts: MIT Press.

Schottstaedt, B. 1994. “Machine Tongues XVII: CLM;
Music V Meets Common Lisp.” Computer Music
Journal 18:30–37.

Schroeder, M. R. 1969. “Digital Simulation of Sound
Transmission in Reverberant Spaces.” Journal of the
Acoustical Society of America 45(1):303.

Smith, J. O. 2007. Introduction to Digital Filters with
Audio Applications. Palo Alto, California: W3K.

Sorensen, A., and H. Gardner. 2010. “Programming with
Time: Cyber-Physical Programming with Impromptu.”
In Proceedings of the ACM International Conference
on Object-Oriented Programming Systems Languages,
and Applications, pp. 822–834.

Strachey, C. 2000. “Fundamental Concepts in Pro-
gramming Languages.” Higher-Order and Symbolic
Computation 13(1-2):11–49.

Van Roy, P. 2009. “Programming Paradigms for Dummies:
What Every Programmer Should Know.” In G. Assayag
and A. Gerzso, eds. New Computational Paradigms for
Music. Paris: Delatour, IRCAM, pp. 9–49.

Verstraelen, M., J. Kuper, and G. J. M. Smit. 2014.
“Declaratively Programmable Ultra-Low Latency
Audio Effects Processing on FPGA.” In Proceedings of
the International Conference on Digital Audio Effects,
pp. 263–270.

Wang, G., and P. R. Cook. 2003. “ChucK: A Concurrent,
On-the-Fly, Audio Programming Language.” In Proceed-
ings of the International Computer Music Conference,
pp. 1–8.

Wang, G., R. Fiebrink, and P. R. Cook. 2007. “Combining
Analysis and Synthesis in the ChucK Programming Lan-
guage.” In Proceedings of the International Computer
Music Conference, pp. 35–42.

48 Computer Music Journal

68 kronos: a declarative metaprogramming language for digital signal processing



P2 A U N I F I E D M O D E L F O R A U D I O A N D
C O N T R O L S I G N A L S I N P W G L S Y N T H

Vesa Norilo and Mikael Laurson. A Unified Model for Audio and Control Signals in PWGLSynth.
In Proceedings of the International Computer Music Conference, Belfast, 2008

69



A UNIFIED MODEL FOR AUDIO AND CONTROL SIGNALS IN
PWGLSYNTH

Vesa Norilo and Mikael Laurson
Sibelius-Academy

Centre of Music and Technology

ABSTRACT

This paper examines the signal model in the current itera-
tion of our synthesis language PWGLSynth. Some prob-
lems are identifi ed and analyzed with a special focus on
the needs of audio analysis and music information retrieval.
A new signal model is proposed to address the needs of
different kinds of signals within a patch, including a va-
riety of control signals and audio signals and transitions
from one kind of signal to another. The new model is
based on the conceptual tools of state networks and state
dependency analysis. The proposed model aims to com-
bine the benefi ts of data driven and request driven mod-
els to accommodate both sparse event signals and regular
stream signals.

1. INTRODUCTION

The central problem of a musical synthesis programming
environment is to maintain a balance of effi cient real time
performance, expressiveness, elegance and ease of use.
These requirements often seem to contradict. Careful de-
sign of the programming environment can help to mitigate
the need for tradeoffs.

The original PWGLSynth evaluator [3] is a ugen soft-
ware that features a visual representation of a signal graph
[1]. It was written to guarantee a robust DSP scheduling
that is well suited for tasks including physical modelling
synthesis. This was accomplished by scheduling the cal-
culations by the means of data dependency - in order to
produce the synth output, the system traverses the patch
upstream, resolving the dependencies of each box in turn.
This signal model is often referred to ’request driven’ or
’output driven’. The model has the distinguishing feature
of performing computations when needed for the output,
and is well suited for processing fi xed time interval sample
streams.

The opposite model is called ’data driven’ or ’input
driven’. Calculations are performed on the system input
as it becomes available. This model is well suited for
sparse data such as a sequence of MIDI events. The input
driven model is represented by the MAX environment[6].
The bulk of PWGLSynth scheduling in the current ver-
sion is output driven. Some benefi ts of the input driven
approach are available via the use of our refresh event
scheme, which can override the evaluation model for a
particular connection.

The rest of this paper is organized as follows. In the
fi rst section, ’PWGLSynth signal model’, some problems
in the current signal model are examined, focusing on au-
dio analysis and music information retrieval. In the second
section ’Optimizing signal processing’, a new, more gen-
eral signal model is presented. The new model combines
simplifi ed patch programming with robust timing and effi -
cient computation, allowing the user to combine different
kinds of signals transparently. Finally, in the last section,
’Signals in a musical DSP system’, the proposed system
is examined in the context of audio analysis.

2. THE PWGLSYNTH SIGNAL MODEL

PWGLSynth was designed for the scenario where Lisp-
based user interface elements or precalculated sequencer
events provide control data for a synthesis patch. We wanted
to avoid splitting the system into audio rate and control
rate paths, and developed the PWGLSynth refresh scheme
which mixes output driven evaluation with data driven con-
trol events. In practice, boxes can get notifi ed when their
incoming control signal changes.

This notifi cation is called a refresh event. A box can
respond to a refresh event by performing some calcula-
tions that assist the inner audio loop. When audio out-
puts are connected to inputs that require refresh, the sys-
tem generates refresh events at a global control rate. For
example, an audio oscillator can be connected to a fi lter
frequency control with the expected behaviour while still
avoiding the need to recalculate fi lter coeffi cients at au-
dio rate. When considering audio analysis, the scenario
changes drastically. Control signals are generated from an
audio signal, often in real time.

2.1. Prospects for audio analysis and music informa-
tion retrieval

Audio analysis essentially involves a mixture of sparse
event streams and fi xed interval sample streams. Some
analysis modules will recognize certain discrete features
of an input stream, while others will retrieve some higher
level parameter from an input stream, usually at a lower
signal rate than that of the audio signal. A buffered FFT
analysis might be triggered at a certain sample frame, re-
sulting in a set of high level parameters that require further
processing.

70 a unified model for audio and control signals in pwglsynth



28.18

mantissa
28.18

exponent

pow

S

mantissa exponent

reson

S

0.0 freq

0.1 1.0

1
2

3

Figure 1. Simple example of cached computation results.

It is also conceivable to extract some high level control
parameters from an audio stream and then use them for
further audio synthesis. The potential of a system with
seamless analysis and synthesis facilities is discussed in
[7].

2.2. Towards a general unified signal model in a mixed
rate system

The PWGLSynth Refresh scheme could in theory be adapted
to suit audio analysis. A FFT box could store audio data
internally until a buffer is full, then perform analysis and
generate refresh events along with new output data. How-
ever, PWGLSynth provides no guarantees on the timing
of refresh events generated during synthesis processing,
as the scheme was devised for user interface interaction
and automatic conversion of audio into control rate signal.
The refresh scheme is well suited for simple control signal
connections, but is not suffi cient for the general case.

Since the refresh calls happen outside the synthesis pro-
cessing, a unit delay may occur in the transition of the sig-
nal from audio to control rate. While not critical for user
interface interaction, even a small scheduling uncertainty
is not practical for audio analysis, where further process-
ing will often be applied to the control signal. It is impor-
tant to have well defi ned timing rules for the case of mixed
signal rates.

Why not employ audio rate or the highest required rate
for all signals? While this would guarantee robust timing,
the very central motive for using a control rate at all is to
optimize computation. Effi cient handling of control sig-
nals can increase the complexity limit of a patch playable
in real time, extend polyphony or reduce computation time
for an offl ine patch.

3. OPTIMIZING SIGNAL PROCESSING

3.1. State-dependency analysis

The central theme in DSP optimization is always the same:
how to avoid performing unnecessary calculations with-
out degrading the output. The signal model and system

scalability are a central design problem of any synthesis
programming environment [5].

A simple example patch is given in Figure 1. In this
patch, a set of sliders, labeled (1), represent the user in-
terface. An intermediate power function (2) is computed
based on the slider values, fi nally controlling the corner
frequency of a fi lter (3).

When a human observer looks at the patch, it’s imme-
diately obvious that some calculations are not necessary to
perform at the audio rate. This fi nding is a result of a de-
pendency analysis, aided by our knowledge of mathemat-
ical rules. Updating fi lter coeffi cients tends to be compu-
tationally expensive, not to speak of the power function.
Yet, the coeffi cients ultimately depend on only the two
values represented by sliders. In other words, the power
function or the coeffi cients will not change unless the user
moves one or both of the sliders. This can be expected to
happen much more rarely than at the audio rate.

This is a very specifi c case that nevertheless represents
the whole control scheme quite generally. The key idea
is to note that certain signals do not change often and to
avoid calculations whenever they don’t. Traditional mod-
ular synthesis systems have separated signals into audio
rate and control rate signal paths. In this scheme, the pro-
grammer is required to explicitly state which signal rate to
use for any given connection. Often, separate modules are
provided for similar functions, one for each signal rate. A
unifi ed signal model on the other hand greatly decreases
the time required to learn and use the system, as well as
increases patch readability, often resulting in compact and
elegant synthesis patches.

3.2. Functional computation scheme

In the previous example, the dependency analysis is easy
to carry out because we know the power function very
well. Its state only depends on the mantissa and exponent.
It is less obvious what would happen if the box would be
some other, more obscure PWGLSynth box.

The power function has an important property we might
overlook since it is so obvious, yet carries deep theoreti-
cal meaning: it is strictly functional, meaning that it has
no internal state. All power functions behave exactly the
same, given identical input, at all times. This is unlike
a recursive digital fi lter, which has an internal state that
infl uences its output.

It turns out that many of the DSP operations can be
carried out with functional operators. These include the
common arithmetic and all stateless functions. When we
extend the allowed operations by an unit delay, practi-
cally any known algorithm is attainable. By formulating
the synthesis process as a functional tree expression, de-
pendencies are easy to fi nd. When a value in the patch
changes, only the values downstream in the patch from it
will need to be recomputed. Functional representation has
many benefi ts, as shown in PWGL, Faust [4] or Fugue [2],
all successful musical programming languages.

Traditional digital signal processing relies heavily on
internal state, which can be represented by a fi lter buffer

a unified model for audio and control signals in pwglsynth 71



or a delay line feedback path. For the needs of depen-
dency analysis, full functional rigor is not required. We
only need to recognize that DSP modules with internal
state will produce different output with identical input, but
different moment in time.

By adding a ’time’ source upstream of all modules with
state we can make sure that by representing the time via a
sample clock as a fundamental part of our functional com-
putation tree, we can include modules with state. Correct,
strictly functional behavior is ensured by functional de-
pendency analysis once time is recognized as a parameter
to all stateful modules.

3.3. State change propagation and synchronic updates

Our proposed system, aimed towards an intuitive yet effi -
cient computation model, mixes aspects of input and out-
put driven models. The patch is modeled with a number of
endpoints which are, in effect, the state space of the sys-
tem. Every point at which an user can tap into the patch
is given a state. These states form a network, where each
endpoint is connected to other endpoints by computational
expressions. By utilizing functional building blocks, we
can carry out dependency analysis and determine which
states need to be recomputed when a certain state value is
changed.

Thus the actual computation process resembles the out-
put driven model, where computations are carried out when
output is needed. The distinction is, however, that the out-
put can ’know’ when a recomputation is needed since it
will be notifi ed of updated input states. In effect, an out-
put driven computation schedule is created for every input
state of the system. A change in the input state then trig-
gers the processing that updates its dependent states, in an
input driven fashion.

A special case arises when several states must be up-
dated synchronously. If each state update triggers recom-
putation of the relevant dependent states, and a state de-
pends on several updated states, multiple updates are un-
necessarily carried out. In addition, this would break any
timing scheme that requires that updates happen regularly
with the sample clock, such as a unit delay primitive.

This problem can be solved with update blocks that
consist of two steps: fi rst, all states that are about to be
updated will be marked as pending. This pending sta-
tus also propagates downstream in the state network, with
each state keeping count of the number of pending states
it depends on.

The second step consists of updating the state and re-
leasing the pending fl ag. During release, all dependent
states will decrement their pending counter and when it
reaches zero, all states they depend on will have updated
their value and the computation can be performed.

For effi ciency, a third update mode is introduced. It
will ignore the pending counters and just trigger compu-
tation and reset the pending counter to one. This mode
is what will be used for the most frequently updated state,
namely the sample clock. This allows for avoiding branches
inside the innermost audio loop while marking all states

that depend on the sample clock pending until the next
input. Viewed within the entire model, the sample clock
is always pending, apart from the moment that the actual
audio rate computation is performed. This leaves the por-
tions of the patch that dont deal with audio available for
control rate computations outside the inner audio loop.

3.4. Signal model overview

The complete synthesis scheme goes as follows: by de-
fault, boxes that depend on the sample clock are by default
set to ’pending’ with counter 1. Before updating the sam-
ple clock, all control event or user interface state changes
are updated as a block and released. This triggers all cal-
culations that do not depend on the sample clock. Finally,
sample clock is updated. Since dependencies refl ect on
the whole patch downstream from a given box, the sam-
ple clock update is in fact the actual audio computation.

Intermediate states can be automatically inserted at patch
points where signal rates mix. These states work as cached
results of the lower rate signal process for the higher rate
process.

4. SIGNALS IN A MUSICAL DSP SYSTEM

4.1. Coarse and fine time

To further ease box development, more than one clock
source can be provided on the global level. Modules that
require clock input could connect to either an audio rate
or a control rate clock source. In most cases this connec-
tion should be made implicit and not visible to the user. A
typical example with several different clock source possi-
bilities would be an oscillator that functions as either an
audio oscillator or a LFO for some computationally ex-
pensive operation.

It is possible to add metadata to the modules in order
to automatically choose the most appropriate clock source
for a given situation. If a sine oscillator is connected to
an input that prefers a coarse control signal, it can auto-
matically revert to a coarse clock and therefore produce
an appropriate signal. Clocking could also be made an
optional user parameter.

4.2. Signal rate decimation in audio analysis

Considering audio analysis from the perspective of the
proposed paradigm, we encounter a further problem. Con-
sider a typical buffered analysis scheme, where high level
parameters are retrieved from a block of audio samples.
This decimates the signal rate, as only one output value is
produced per sample block.

Regardless, there is a functional relation between the
audio data and the extracted parameters, implying that
within the dependency rules outlined above, the high level
analysis results must also be refreshed at audio rate. For
modules that produce a control rate signal based on an
audio rate signal, an intelligent scheduling scheme is re-
quired.

72 a unified model for audio and control signals in pwglsynth



sound-in

S

fft

S

sig 1024

1024 0.0

0.0

fft

S

sig 2048

2048 0.0

0.0

fft

S

sig 512

512 0.0

0.0

hps

S

fft 0.0

hps

S

fft 0.0

hps

S

fft 0.0

combiner

S

patch

patches

patches
vector-median

A
sine

S

1

2

3

4

Figure 2. An audio analysis patch.

The system is completed by a sample-and-hold prim-
itive, accessible to box developers. The primitive is able
to break a dependency chain. It takes two inputs, updating
its output to the fi rst input when and only when the second
input changes. This makes it possible for a box designer to
instruct the scheduler to ignore an apparent dependency.

This exception to the scheme causes some complica-
tions. When resolving the order in which states need to
be refreshed when an upstream state changes, all depen-
dencies must be traced through the sample-and-hold, even
though the chain is broken for the fi rst input. This is to en-
force correct scheduling in the case where the decimated
rate signal is merged back into the higher rate stream.

4.3. Redundant f0 estimation - a case study

The example patch in Figure 2 demonstrates the scheme
in audio analysis.

Three f0 estimators with different frame size work in
parallel for increased pitch detection robustness, driving
a simple sine oscillator that follows the pitch of the au-
dio input. The modules that depend on audio rate sample
clock are sound-in and sine. The three FFT modules (1)
therefore also depend on the sample clock, but break the
downstream dependency since their output (the spectrum)
changes with a lower rate.

The audio input to each FFT fi lls a ring buffer, with-
out causing any output state refreshes. Timing is provided
by assigning a coarse clock signals for each FFT module.
The clock update is timed to provide an update when the
ring buffer is full.

Upon a coarse clock update, the FFT computations are
performed, f0 estimation is carried out and the median fre-
quency is fed into the sine osc. However, since the sine
osc depends on the fi ne clock, its operation is suspended
and separately activated by the fi ne clock after the analy-
sis step. Thus a delay-free and correctly scheduled audio -
analysis - audio signal path is preserved with no waste of
computational resources.

5. CONCLUSION

In this paper, we examined a signal graph processing sys-
tem from a theoretical viewpoint. Some criteria for avoid-
ing wasted computation operations were examined. We
proposed a new signal model as a hybrid of two well known
signal model schemes, which offers intuitive and robust
system response with both sparse event streams and reg-
ular sample streams. The system features synchronic up-
dates of input values as well as intelligent refreshing of
output values. Finally, the proposed signal model was ex-
amined in the context of audio analysis.

6. ACKNOWLEDGEMENTS

This work has been supported by the Academy of Finland
(SA 105557 and SA 114116).

7. REFERENCES

[1] R.B Dannenberg and R. Bencina. Design patterns
for real-time computer music systems. ICMC 2005
Workshop on Real Time Systems Concepts for Com-
puter Music, 2005.

[2] R.B. Dannenberg, C.L. Fraley, and P.Velikonja.
Fugue: a functional language for sound synthesis.
Computer, 24(7):36– 42, 1991.

[3] Mikael Laurson, Vesa Norilo, and Mika Kuuskankare.
PWGLSynth: A Visual Synthesis Language for Vir-
tual Instrument Design and Control. Computer Music
Journal, 29(3):29– 41, Fall 2005.

[4] Yann Orlarey, Dominique Fober, and Stephane Letz.
Syntactical and semantical aspects of faust. Soft Com-
puting, 2004.

[5] S.T. Pope and R.B. Dannenberg. Models and apis for
audio synthesis and processing. ICMC 2007 Panel,
2007.

[6] M. Puckette. Combining event and signal process-
ing in the max graphical programming environment.
Computer Music Journal, 15(3):68– 77, 1991.

[7] G. Wang, R. Fiebrink, and P.R. Cook. Combining
analysis and synthesis in the chuck programming lan-
guage. In Proceedings of the 2007 International Com-
puter Music Conference, pages 35– 42, Copenhagen,
2007.

a unified model for audio and control signals in pwglsynth 73





P3 I N T R O D U C I N G K R O N O S – A N O V E L
A P P R OA C H TO S I G N A L P R O C E S S I N G
L A N G U A G E S

Vesa Norilo. Introducing Kronos - A Novel Approach to Signal Processing Languages. In Frank
Neumann and Victor Lazzarini, editors, Proceedings of the Linux Audio Conference, pages 9–16, Maynooth,
2011. NUIM

75



Introducing Kronos
A Novel Approach to Signal Processing Languages

Vesa Norilo
Centre for Music & Technology, Sibelius Academy

Pohjoinen Rautatiekatu 9
00100 Helsinki,

Finland,
vnorilo@siba.fi

Abstract

This paper presents an overview of Kronos, a soft-
ware package aimed at the development of musical
signal processing solutions. The package consists of
a programming language specification as well JIT
Compiler aimed at generating high performance ex-
ecutable code.

The Kronos programming language aims to be a
functional high level language. Combining this with
run time performance requires some unusual trade-
offs, creating a novel set of language features and
capabilities.

Case studies of several typical musical signal pro-
cessors are presented and the suitability of the lan-
guage for these applications is evaluated.

Keywords

Music, DSP, Just in Time Compiler, Functional,
Programming language

1 Introduction

Kronos aims to be a programming language and
a compiler software package ideally suited for
building any custom DSP solution that might
be required for musical purposes, either in the
studio or on the stage. The target audience
includes technologically inclined musicians as
well as musically competent engineers. This
prompts a re-evaluation of design criteria for
a programming environment, as many musi-
cians find industrial programming languages
very hostile.

On the other hand, the easily approachable
applications currently available for building mu-
sical DSP algorithms often fail to address the
requirements of a programmer, not providing
enough abstraction nor language constructs to
facilitate painless development of more compli-
cated systems.

Many software packages from Pure
Data[Puckette, 1996] to Reaktor[Nicholl,
2008] take the approach of more or less sim-
ulating a modular synthesizer. Such packages

combine a varying degree of programming lan-
guage constructs into the model, yet sticking
very closely to the metaphor of connecting
physical modules via patch cords. This de-
sign choice allows for an environment that
is readily comprehensible to anyone familiar
with its physical counterpart. However, when
more complicated programming is required,
the apparent simplicity seems to deny the
programmer the special advantages provided
by digital computers.

Kronos proposes a solution more
closely resembling packages like Supercol-
lider[McCartney, 2002] and Faust[Orlarey et
al., 2004], opting to draw inspiration from
computer science and programming language
theory. The package is fashioned as a just
in time compiler[Aycock, 2003], designed to
rapidly transform user algorithms into efficient
machine code.

This paper presents the actual language that
forms the back end on which the comprehensive
DSP development environment will be built. In
Section 2, Language Design Goals, we lay out
the criteria adopted for the language design. In
Section 3, Designing the Kronos Language, the
resulting design problems are addressed. Sec-
tion 5, Case Studies, presents several signal
processing applications written in the language,
presenting comparative observations of the ef-
ficacy our proposed solution to each case. Fi-
nally, Section 6, Conclusion, summarizes this
paper and describes future avenues of research.

2 Language Design Goals

This section presents the motivation and aspi-
rations for Kronos as a programming language.
Firstly, the requirements the language should be
able to fulfill are enumerated. Secondly, sum-
marized design criteria are derived from the re-
quirements.

76 introducing kronos – a novel approach to signal processing languages



2.1 Musical Solutions for
Non-engineers

Since the target audience of Kronos includes
non-engineers, the software should ideally be
easily approached. In this regard, the visually
oriented patching environments hold an advan-
tage.

A rigorously designed language offers logi-
cal cohesion and structure that is often missing
from a software package geared towards rapid
visual construction of modular ad-hoc solutions.
Consistent logic within the environment should
ease learning.

The ideal solution should be that the envi-
ronment allows the casual user to stick to the
metaphor of physical interconnected devices,
but also offers an avenue of more abstract pro-
gramming for advanced and theoretically in-
clined users.

2.2 DSP Development for Professionals

Kronos also aspires to be an environment for
professional DSP developers. This imposes two
additional design criteria: the language should
offer adequately sophisticated features, so that
more powerful programming constructs can be
used if desired. The resulting audio processors
should also exhibit excellent real time perfor-
mance.

A particularily challenging feature of a musi-
cal DSP programming is the inherent multi-rate
processing. Not all signals need equally frequent
updates. If leveraged, this fact can bring about
dramatic performance benefits. Many systems
offer a distinction between control rate and au-
dio rate signals, but preferably this forced dis-
tinction should be eliminated and a more gen-
eral solution be offered, inherent to the lan-
guage.

2.3 An Environment for Learning

If a programming language can be both be-
ginner friendly and advanced, it should ap-
peal to developers with varying levels of com-
petency. It also results in an ideal peda-
gogical tool, allowing a student to start with
relatively abstraction-free environment, resem-
bling a modular synthesizer, progressing to-
wards higher abstraction and efficient program-
ming practices.

2.4 A Future Proof Platform

Computing is undergoing a fundamental shift
in the type of hardware commonly available. It
is essential that any programming language de-
signed today must be geared towards parallel
computation and execution on a range of differ-
ing computational hardware.

2.5 Summary of the Design Criteria

Taking into account all of the above, the lan-
guage should;

• Be designed for visual syntax and graphical
user interfaces

• Provide adequate abstraction and ad-
vanced programming constructs

• Generate high performance code

• Offer a continuous learning curve from be-
ginner to professional

• Be designed to be parallelizable and
portable

3 Designing the Kronos Language

This section will make a brief case for the design
choices adapted in Kronos.

3.1 Functional Programming

The functional programming paradigm[Hudak,
1989] is the founding principle in Kronos. Si-
multaneously fulfilling a number of our criteria,
we believe it to be the ideal choice.

Compared to procedural languages, func-
tional languages place less emphasis on the
order of statements in the program source.
Functional programs are essentially signal flow
graphs, formed of processing nodes connected
by data flow.

Graphs are straightforward to present visu-
ally. The nodes and data flows in such trees are
also something most music technologists tend to
understand well. Much of their work is based on
making extensive audio flow graphs.

Functional programming also offers exten-
sive abstraction and sophisticated programming
constructs. These features should appeal to ad-
vanced programmers.

Further, the data flow metaphor of program-
ming is ideally suited for parallel processing,
as the language can be formally analyzed and

introducing kronos – a novel approach to signal processing languages 77



transformed while retaining algorithmic equiva-
lence. This is much harder to do for a procedu-
ral language that may rely on a very particular
order of execution and hidden dependencies.

Taken together, these factors make a strong
case for functional programming for the pur-
poses of Kronos and recommend its adoption.
However, the functional paradigm is quite un-
like what most programmers are used to. The
following sections present some key differences
from typical procedural languages.

3.1.1 No state

Functional programs have no state. The output
of a program fragment is uniquely determined
by its input, regardless of the context in which
the fragment is run. Several further features
and constraints emerge from this fundamental
property.

3.1.2 Bindings Instead of Variables

Since the language is based on data flow instead
of a series of actions, there is no concept of a
changeable variable. Functional operators can
only provide output from input, not change the
state of any external entity.

However, symbols still remain useful. They
can be used to bind expressions, making code
easier to write and read.

3.1.3 Higher Order Functions Instead
of Loops

Since the language has no variables, traditional
loops are not possible either, as they rely on a
loop iteration variable. To accomplish iterative
behavior, functional languages employ recursion
and higher order functions[Kemp, 2007]. This
approach has the added benefit of being eas-
ier to depict visually than traditional loop con-
structs based on textual languages – notoriously
hard to describe in a patching environment.

As an example, two higher order functions
along with example replies are presented in List-
ing 1.

Listing 1: Higher order functions with example
replies

/* Apply the mapping function Sqrt to all elements of a list

*/
Algorithm:Map(Sqrt 1 2 3 4 5) => (1 1.41421 1.73205 2 2.23607)
/* Combine all the elements of a list using a folding

function, Add */
Algorithm:Fold(Add 1 2 3 4 5) => 15

3.1.4 Polymorphism Instead of Flow
Control

A typical procedural program contains a con-
siderable amount of branches and logic state-

ments. While logic statements are part of func-
tional programming, flow control often happens
via polymorphism. Several different forms can
be defined for a single function, allowing the
compiler to pick an appropriate form based on
the argument type.

Polymorphism and form selection is also the
mechanism that drives iterative higher order
functions. The implementation for one such
function, Fold, is presented in Listing 2. Fold
takes as an argument a folding function and a
list of numbers.

While the list can be split into two parts, x
and xs, the second form is utilized. This form
recurs with xs as the list argument. This pro-
cess continues, element by element, until the list
only contains a single unsplittable element. In
that boundary case the first form of the function
is selected and the recursion terminates.

Listing 2: Fold, a higher order function for reduc-
ing lists with example replies.

Fold(folding-function x)
{

Fold = x
}

Fold(folding-function x xs)
{

Fold = Eval(folding-function x Fold(folding-function xs))
}

/* Add several numbers */
Fold(Add 1 2 3 4) => 10
/* Multiply several numbers */
Fold(Mul 5 6 10) => 300

3.2 Generic Programming and
Specialization

3.2.1 Generics for Flexibility

Let us examine a scenario where a sum of sev-
eral signals in differing formats is needed. Let
us assume that we have defined data types for
mono and stereo samples. In Kronos, we could
easily define a summation node that provides
mono output when all its inputs are mono, and
stereo when at least one input is stereo.

An example implementation is provided in
Listing 3. The listing relies on the user defining
semantic context by providing types, Mono and
Stereo, and providing a Coerce method that can
upgrade a Mono input to a Stereo output.

Listing 3: User-defined coercion of mono into
stereo

Type Mono
Package Mono{

Cons(sample) /* wrap a sample in type context ‘Mono’ */
{Cons = Make(:Mono sample)}

Get-Sample(sample) /* retrieve a sample from ‘Mono’
context */

{Get-Sample = Break(:Mono sample)}
}

78 introducing kronos – a novel approach to signal processing languages



Type Stereo
Package Stereo{

Cons(sample) /* wrap a sample in type context ‘Stereo’ */
{Cons = Make(:Stereo sample)}

L/R(sample) /* provide accessors to assumed Left and Right
channels */

{(L R) = Break(:Stereo sample)}
}

Add(a b)
{

/* How to add ‘Mono’ samples */
Add = Mono:Cons(Mono:Get-Sample(a) + Mono:Get-Sample(b))
/* How to add ‘Stereo’ samples */
Add = Stereo:Cons(Stereo:L(a) + Stereo:L(b) Stereo:R(a) +

Stereo:R(b))
}

Coerce(desired-type smp)
{

/* Provide type upgrade from mono to stereo by duplicating
channels */

Coerce = When(
Type-Of(desired-type) == Stereo
Coerce = Stereo:Cons(

Mono:Get-Sample(smp) Mono:Get-Sample(smp)))
}

/* Provide a mixing function to sum a number of channels */
Mix-Bus(ch)
{

Mix-Bus = ch
}

Mix-Bus(ch chs)
{

Mix-Bus = ch + Recur(chs)
}

Note that the function Mix-Bus in Listing 3
needs to know very little about the type of data
passed to it. It is prepared to process a list of
channels via recursion, but the only other con-
straint is that a summation operator must exist
that accepts the kind of data passed to it.

We define summation for two mono signals
and two stereo signals. When no appropriate
form of Add can bedirectly located, as will hap-
pen when adding a mono and a stereo signal,
the system-provided Add -function attempts to
use Coerce to upgrade one of the arguments.
Since we have provided a coercion path from
mono to stereo, the result is that when adding
mono and stereo signals, the mono signal gets
upconverted to stereo by Coerce followed by a
stereo summation.

The great strength of generics is that func-
tions do not explicitly need to be adapted to
a variety of incoming types. If the building
blocks or primitives of which the function is
constructed can handle a type, so can the func-
tion. If the complete set of arithmetic and log-
ical primitives would be implemented for the
types Mono and Stereo, then the vast majority
of functions, written without any knowledge of
these particular types, would be able to trans-
parently handle them.

Generic processing shows great promise once
all the possible type permutations present in
music DSP are considered. Single or double

precision samples? Mono, stereo or multichan-
nel? Real- or complex-valued? With properly
designed types, a singular implementation of a
signal processor can automatically handle any
combination of these.

3.2.2 Type Determinism for
Performance

Generic programming offers great expressive-
ness and power to the programmer. However,
typeless or dynamically typed languages have a
reputation for producing slower code than stat-
ically typed languages, mostly due to the exten-
sive amount of run time type information and
reflection required to make them work.

To bring the performance on par with a static
language, Kronos adopts a rigorous constraint.
The output data type of a processing node may
only depend on the input data type. This is the
principle of type determinism.

As demonstrated in Listing 3, Kronos offers
extensive freedom in specifying what is the re-
sult type of a function given a certain argument
type. However, what is prohibited, based on
type determinism, is selecting the result type of
a function based on the argument data itself.

Thus it is impossible to define a mixing mod-
ule that compares two stereo channels, provid-
ing a mono output when they are identical and
keeping the stereo information when necessary.
That is because this decision would be based on
data itself, not the type of said data.

While type determinism could be a crippling
deficit in a general programming language, it is
less so in the context of music DSP. The ex-
ample above is quite contrived, and regardless,
most musical programming environments simi-
larily prevent changes to channel configuration
and routing on the fly.

Adopting the type determinism constraint al-
lows the compiler to statically analyze the entire
data flow of the program given just the data
type of the initial, caller-provided input. The
rationale for this is that a signal processing algo-
rithm is typically used to process large streams
of statically typed data. The result of a single
analysis pass can then be reused thousands or
millions of times.

3.3 Digital Signal Processing and State

A point must be made about the exclusion of
stateful programs, explained in Section 3.1.1.
This seems at odds with the estabilished body
of DSP algorithms, many of which depend on

introducing kronos – a novel approach to signal processing languages 79



state or signal memory. Examples of stateful
processes are easy to come by. They include
processors that clearly have memory, such as
echo and reverberation effects, as well as those
with recursions like digital IIR filters.

As a functional language, Kronos doesn’t al-
low direct state manipulation. However, given
the signal processing focus, operations that hide
stateful operations are provided to the program-
mer. Delay lines are provided as operators; they
function exactly like the common mathemati-
cal operators. A similar approach is taken by
Faust, where delay is provided as a built-in op-
erator and recursion is an integrated language
construct.

With a native delay operator it is equally sim-
ple to delay a signal as it is, for example, to
take its square root. Further, the parser and
compiler support recursive connections through
these operators. The state-hiding operators
aim to provide all the necessary stateful oper-
ations required to implement the vast majority
of known DSP algorithms.

4 Multirate Programming

One of the most critical problems in many signal
processing systems is the handling of distinct
signal rates. A signal flow in a typical DSP
algorithm is conceptually divided into several
sections.

One of them might be the set of control
signals generated by an user interface or an
external control source via a protocol like
OSC[Wright et al., 2003]. These signals are
mostly stable, changing occasionally when the
user adjusts a slider or turns a knob.

Another section could be the internal mod-
ulation structure, comprising of low frequency
oscillators and envelopes. These signals typi-
cally update more frequently than the control
signals, but do not need to reach the bandwidth
required by audio signals.

Therefore, it is not at all contrived to picture
a system containing three different signal fami-
lies with highly diverging update frequencies.

The naive solution would be to adopt the
highest update frequency required for the sys-
tem and run the entire signal flow graph at that
frequency. In practice, this is not acceptable
for performance reasons. Control signal opti-
mization is essential for improving the run time
performance of audio algorithms.

Another possibility is to leave the signal rate

specification to the programmer. This is the
case for any programming language not specif-
ically designed for audio. As the programmer
has full control and responsibility over the exe-
cution path of his program, he must also explic-
itly state when and how often certain computa-
tions need to be performed and where to store
those results that may be reused.

Thirdly, the paradigm of functional reactive
programming[Nordlander, 1999] can be relied
on to automatically determine signal update
rates.

4.1 The Functional Reactive Paradigm

The constraints imposed by functional program-
ming also turn out to facilitate automatic signal
rate optimization.

Since the output of a functional program frag-
ment depends on nothing but its input, it is
obvious that the fragment needs to be exe-
cuted only when the input changes. Otherwise,
the previously computed output can be reused,
sparing resources.

This realization leads to the functional re-
active paradigm[Nordlander, 1999]. A reactive
system is essentially a data flow graph with in-
puts and outputs. Reactions – responses by
outputs to inputs – are inferred, since an out-
put must be recomputed whenever any input
changes that is directly reachable by following
the data flow upstream.

4.1.1 Reactive Programming in Kronos

Reactive inputs in Kronos are called springs.
They represent the start of the data flow and
a point at which the Kronos program receives
input from the outside world. Reactive outputs
are called sinks, representing the terminals of
data flow. The system can deduce which sinks
receive an update when a particular input is up-
dated.

Springs and Priority
Reactive programming for audio has some

special features that need to be considered. Let
us examine the delay operators presented in Sec-
tion 3.3. Since the delays are specified in com-
putational frames, the delay time of a frame
becomes the inter-update interval of whatever
reactive inputs the delay is connected to. It is
therefore necessary to be able to control this
update interval precisely.

A digital low pass filter is shown in Listing 4.
It is connected to two springs, an audio signal

80 introducing kronos – a novel approach to signal processing languages



High Low

Medium

Figure 1: A reactive graph demonstrating spring
priority. Processing nodes are color coded according
to which spring triggers their update.

provided by the argument x0 and an user inter-
face control signal via OSC[Wright et al., 2003].
The basic form of reactive processing laid out
above would indicate that the unit delays up-
date whenever either the audio input or the user
interface is updated.

However, to maintain a steady sample rate,
we do not want the user interface to force up-
dates on the unit delay. The output of the filter,
as well as the unit delay node, should only react
to the audio rate signal produced by the audio
signal input.

Listing 4: A Low pass filter controlled by OSC

Lowpass(x0)
{

cutoff = IO:OSC-Input("cutoff")
y1 = z-1(’0 y0)
y0 = x0 + cutoff * (y1 - x0)
Lowpass = y0

}

As a solution, springs can be given priorities.
Whenever there is a graph junction where a
node reacts to two springs, the spring priorities
are compared. If they differ, an intermediate
variable is placed at the junction and any reac-
tion to the lower priority spring is supressed for
all nodes and sinks downstream of the junction.

When the springs have equal priority, neither
is supressed and both reactions propagate down
the data flow. Figure 1 illustrates the reactiv-
ity inferral procedure of a graph with several
springs of differing priorities.

Typically, priorities are assigned according to
the expected update rate so that the highest

Audio-Signal

OSC
mod-depth Control-Clock

OSC
mod-freq

LFOCrt:pow

Crt:pow

*

+ 440

Bandpass-Coefs

Biquad-Filter

Figure 2: A practical example of a system con-
sisting of user interface signals, coarse control rate
processing and audio rate processing.

update rate carries the highest priority.

In the example shown in Listing 5 and Figure
2, an user interface signal adjusts an LFO that
in turn controls the corner frequency of a band
pass filter.

There are two junctions in the graph where
supression occurs. Firstly, the user interface
signal is terminated before the LFO computa-
tion, since the LFO control clock overrides the
user interface. Secondly, the audio spring pri-
ority again overrides the control rate priority.
The LFO updates propagate into the coefficient
computations of the bandpass filter, but do not
reach the unit delay nodes or the audio output.

Listing 5: Mixing user interface, control rate and
audio rate signals

Biquad-Filter(x0 a0 a1 a2 b1 b2)
{

y1 = z-1(’0 y0) y2 = z-1(’0 y1) x1 = z-1(’0 x0) x2 = z-1(’0
x1)

y0 = a0 * x0 + a1 * x1 + a2 * x2 - b1 * y1 - b2 * y2
}

Bandpass-Coefs(freq r amp)
{

(a0 a1 a2) = (Sqrt(r) 0 Neg(Sqrt(r)))
(b1 b2) = (Neg(2 * Crt:cos(freq) * r) r * r)
Bandpass-Coefs = (a0 a1 a2 b1 b2)

}

Vibrato-Reson(sig)
{

Use IO
freq = OSC-Input("freq")
mod-depth = Crt:pow(OSC-Input("mod-depth") 3)
mod-freq = Crt:pow(OSC-Input("mod-freq") 4)

Vibrato-Reson = Biquad-Filter(sig
Bandpass-Coefs(freq + mod-depth * LFO(mod-freq) 0.95

0.05))
}

introducing kronos – a novel approach to signal processing languages 81



4.1.2 Explicit Reaction Supression

It is to be expected that the priority system by
itself is not sufficient. Suppose we would like to
build an envelope follower that converts the en-
velope of an audio signal into an OSC[Wright et
al., 2003] control signal with a lower frequency.
Automatic inferral would never allow the lower
priority control rate spring to own the OSC out-
put; therefore a manual way to override supres-
sion is required.

This introduces a further scheduling compli-
cation. In the case of automatic supression, it is
guaranteed that nodes reacting to lower prior-
ity springs can never depend on the results of a
higher priority fragment in the signal flow. This
enables the host system to schedule spring up-
dates accordingly so that lower priority springs
fire first, followed by higher priority springs.

When a priority inversal occurs, such that
a lower priority program fragment is below a
higher priority fragment in the signal flow, the
dependency rule stated above no longer holds.
An undesired unit delay is introduced at the
graph junction. To overcome this, the system
must split the lower priority spring update into
two sections, one of which is evaluated before
the suppressed spring, while the latter section
is triggered only after the supressed spring has
been updated.

Priority inversal is still a topic of active re-
search, as there are several possible implemen-
tations, each with its own problems and bene-
fits.

5 Case Studies

5.1 Reverberation

5.1.1 Multi-tap delay

As a precursor to more sophisticated reverber-
ation algorithms, multi-tap delay offers a good
showcase for the generic programming capabil-
ities of Kronos.

Listing 6: Multi-tap delay

Multi-Tap(sig delays)
{

Use Algorithm
Multi-Tap = Reduce(Add Map(Curry(Delay sig) delays))

}

The processor described in Listing 6 shows a
concise formulation of a highly adaptable bank
of delay lines. Higher order functions Reduce
and Map are utilized in place of a loop to pro-
duce a number of delay lines without duplicat-
ing delay statements.

Another higher order function, Curry, is used
to construct a new mapping function. Curry at-
taches an argument to a function. In this con-
text, the single signal sig shall be fed to all the
delay lines. Curry is used to construct a new de-
lay function that is fixed to receive the curried
signal.

This curried function is then used as a map-
ping function to the list of delay line lengths, re-
sulting in a bank of delay lines, all of them being
fed by the same signal source. The outputs of
the delay lines are summed, using Reduce(Add
...). It should be noted that the routine pro-
duces an arbitrary number of delay lines, deter-
mined by the length of the list passed as the
delays argument.

5.1.2 Schroeder Reverberator

It is quite easy to expand the multi-tap de-
lay into a proper reverberator. Listing 7
implements the classic Schroeder reverbera-
tion[Schroeder, 1969]. Contrasted to the multi-
tap delay, a form of the polymorphic Delay
function that features feedback is utilized.

Listing 7: Classic Schroeder Reverberator

Feedback-for-RT60(rt60 delay)
{ Feedback-for-RT60 = Crt:pow(#0.001 delay / rt60) }

Basic(sig rt60)
{

Use Algorithm
allpass-params = ((0.7 #221) (0.7 #75))
delay-times = (#1310 #1636 #1813 #1927)

feedbacks = Map(
Curry(Feedback-for-RT60 rt60) delay-times)

comb-section = Reduce(Add
Zip-With(

Curry(Delay sig) feedbacks delay-times))

Basic = Cascade(Allpass-Comb comb-section allpass-params)
}

A third high order function, Cascade, is
presented, providing means to route a signal
through a number of similar stages with differ-
ing parameters. Here, the number of allpass
comb filters can be controlled by adding or re-
moving entries to the allpass-params list.

5.2 Equalization

In this example, a multi-band parametric equal-
izer is presented. For brevity, the implementa-
tion of the function Biquad-Filter is not shown.
It can be found in Listing 5. The coefficient
computation formula is from the widely used
Audio EQ Cookbook[Bristow-Johnson, 2011].

Listing 8: Multiband Parametric Equalizer

Package EQ{
Parametric-Coefs(freq dBgain q)
{

82 introducing kronos – a novel approach to signal processing languages



A = Sqrt(Crt:pow(10 dbGain / 40))
w0 = 2 * Pi * freq
alpha = Crt:sin(w0) / (2 * q)

(a0 a1 a2) = ((1 + alpha * A) (-2 * Crt:cos(w0)) (1 -
alpha * A))

(b0 b1 b2) = ((1 + alpha / A) (-2 * Crt:cos(w0)) (1 -
alpha / A))

Parametric-Coefs = ((a0 / b0) (a1 / b0) (a2 / b0) (b1 /
b0) (b2 / b0))

}

Parametric(sig freqs dBgains qs)
{

Parametric = Cascade(Biquad-Filter
Zip3-With(Parametric-Coefs freqs dBgains qs))

}
}

This parametric EQ features an arbitrary
number of bands, depending only on the size of
the lists freqs, dBgains and qs. For this example
to work, these list lengths must match.

6 Conclusion

This paper presented Kronos, a programming
language and a compiler suite designed for musi-
cal DSP. Many of the principles discussed could
be applied to any signal processing platform.

The language is capable of logically and ef-
ficiently representing various signal processing
algorithms, as demonstrated in Section 5. As
algorithm complexity grows, utilization of ad-
vanced language features becomes more advan-
tageous.

While the language specification is practically
complete, a lot of implementation work still re-
mains. Previous work by the author on autovec-
torization and parallelization[Norilo and Laur-
son, 2009] should be integrated with the new
compiler. Emphasis should be placed on paral-
lel processing in the low latency case; a partic-
ularily interesting and challenging problem.

In addition to the current JIT Compiler for
x86 computers, backends should be added for
other compile targets. Being able to generate
C code would greatly facilitate using the sys-
tem for generating signal processing modules
to be integrated into another software package.
Targeting stream processors and GPUs is an
equally interesting opportunity.

Once sufficiently mature, Kronos will be re-
leased as a C-callable library. There is also
a command line interface. Various licens-
ing options, including a dual commercial/GPL
model are being investigated. A development
of PWGLSynth[Laurson et al., 2009] based on
Kronos is also planned. Meanwhile, progress
and releases can be tracked on the Kronos web-
site[Norilo, 2011].

References

J Aycock. 2003. A brief history of just-in-
time. ACM Computing Surveys, 35(2):97–
113.

Robert Bristow-Johnson. 2011. Audio EQ
Cookbook (http://musicdsp.org/files/Audio-
EQ-Cookbook.txt).

Paul Hudak. 1989. Conception, evolu-
tion, and application of functional program-
ming languages. ACM Computing Surveys,
21(3):359–411.

Colin John Morris Kemp. 2007. Theoreti-
cal Foundations for Practical Totally Func-
tional Programming. Ph.D. thesis, University
of Queensland.

Mikael Laurson, Mika Kuuskankare, and Vesa
Norilo. 2009. An Overview of PWGL, a Vi-
sual Programming Environment for Music.
Computer Music Journal, 33(1):19–31.

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(4):61–68.

James Nicholl. 2008. Developing applications
in a patch language - A Reaktor Perspective.
pages 1–23.

Johan Nordlander. 1999. Reactive Ob-
jects and Functional Programming. Ph.D.
thesis, Chalmers University of Technology,
Götebord, Sweden.

Vesa Norilo and Mikael Laurson. 2009. Kro-
nos - a Vectorizing Compiler for Music DSP.
In Proceedings of DAFx, pages 180–183.

Vesa Norilo. 2011. Kronos Web Resource
(http://kronos.vesanorilo.com).

Y Orlarey, D Fober, and S Letz. 2004. Syn-
tactical and semantical aspects of Faust. Soft
Computing, 8(9):623–632.

M Puckette. 1996. Pure data: another inte-
grated computer music environment. In Pro-
ceedings of the 1996 International Computer
Music Conference, pages 269–272.

M R Schroeder. 1969. Digital Simulation of
Sound Transmission in Reverberant Spaces.
Journal of the Acoustical Society of America,
45(1):303.

Matthew Wright, Adrian Freed, and Ali Mo-
meni. 2003. OpenSound Control: State of the
Art 2003. Time, pages 153–159.

introducing kronos – a novel approach to signal processing languages 83





P4 D E S I G N I N G S Y N T H E T I C
R E V E R B E R ATO R S I N K R O N O S

Vesa Norilo. Designing Synthetic Reverberators in Kronos. In Proceedings of the International Com-
puter Music Conference, pages 96–99, Huddersfield, 2011

85



DESIGNING SYNTHETIC REVERBERATORS IN KRONOS

Vesa Norilo

Sibelius Academy
Centre for Music & Technology, Helsinki, Finland

vnorilo@siba.fi

ABSTRACT

Kronos is a special purpose programming language in-
tended for musical signal processing tasks. The central
aim is to provide an approachable development environ-
ment that produces industrial grade signal processors.

The system is demonstrated here in the context of de-
signing and building synthetic reverberation algorithms.
The classic Schroeder-Moorer algorithm is presented, as
well as a feedback delay network, built with the abstrac-
tion tools afforded by the language. The resulting signal
processors are evaluated both subjectively and in raw per-
formance terms.

1. INTRODUCTION

The Kronos package consists of a language specification
as well as an optimizing compiler. The compiler can be
paired with several back ends. Currently the main focus is
on a just in time compiler for the x86 architecture, while
a C-language generator is also planned.

Syntactically Kronos is inspired by high level func-
tional languages[1]. The syntax of functional languages
is ideally suited for visualization; this match is demon-
strated by another source of inspiration, Faust[6]. Even-
tually, Kronos aims to combine the ease of use and ap-
proachability of graphical environments like Pure Data[7]
and PWGL[3] with the abstraction and rigour typical of
functional programming languages.

Kronos programs are generic, meaning that signal pro-
cessing blocks can be written once and used in any num-
ber of type configurations. For example, a digital filter
could be designed without specifying single or double pre-
cision sample resolution or even if the data is numerically
real or complex, monophonic or multichannel. The type
system used in Kronos is more thoroughly discussed in[5].

When a Kronos patch is connected to a typed source,
like an audio input, the patch is specialized. The generic
algorithm description is type inferred[ref]. Following this,
the execution is deterministic, which faciliates drastic com-
piler optimization[ref]. The system could be summarized
as a type-driven code generator that produces highly op-
timized, statically typed code from high level, functional
source code.

The rest of this paper is organized as follows. Sec-
tion 2, Implementing a Reverberator, discusses the imple-
mentation of various primitives and algorithms in Kronos.

Section 3, Tuning, discusses additions and enhancements
to the basic algorithms. The results are evaluated in Sec-
tion 4, Evaluation, before the paper’s Conclusion, Section
5.

2. IMPLEMENTING A REVERBERATOR

Reverberation is a good example case, as the algorithms
are straightforward yet complicated enough to stress the
development environment and provide opportunities for
utilization of several language features. They are also well
suited for performance benchmarks.

2.1. Primitives for Reverberation

The example cases start with the primitives that are essen-
tial to synthetic reverberation. Delay lines, comb filters,
and allpass filters will be examined.

2.1.1. Delay

While the functional programming paradigm intuitively
matches the signal flow graph widely used for describing
signal processing algorithms, there is an apparent clash.
Functional programs do not support program state, or mem-
ory, a fundamental part of any processor with delay or
feedback.

The solution to this problem offered by Kronos is a
integrated delay operator. Called rbuf, short for a ring
buffer, the operator receives three parameters: an initial-
izer function, allowing the user to specify the contents of
the ring buffer at the start of processing, the size of the
buffer or delay time and finally the signal input. In Listing
1, a simple delay function is presented. This delay line is
10 samples long and is initialized to zero at the beginning.

Listing 1. Simple delay
Delay ( s i g )
{

Delay = r b u f ( ’ 0 #10 s i g )
}

2.1.2. Comb filter

A delay line variant with internal feedback, a comb filter,
is also widely used in reverberation algorithms. For this
configuration, we must define a recursive connection. The
rbuf operator allows signal recursion. As in all digital

86 designing synthetic reverberators in kronos



systems, some delay is required for the recursion to be
finitely computable. A delay line with feedback is shown
in Listing 2. In this example, the symbol output is used as
the recursion point.

Listing 2. Delay with feedback
Delay ( s i g fb d e l a y )
{

d e l a y e d = r b u f ( ’ 0 d e l a y s i g + fb ∗ d e l a y e d )
Delay = d e l a y e d

}

2.1.3. Allpass-Comb

An allpass comb filter is a specially tuned comb filter that
has a flat frequency response. An example implementa-
tion is shown in Listing 3, similar to the one described by
Schroeder[8].

Listing 3. Allpass Comb filter
A l l p a s s−Comb ( s i g fb d e l a y )
{

d e l a y e d = r b u f ( ’ 0 d e l a y s i g − fb ∗ d e l a y e d )
A l l p a s s−Comb = 0 . 5 ∗ ( s i g + d e l a y e d + fb ∗ d e l a y e d )

}

2.2. Multi-tap delay

As a precursor to more sophisticated reverberation algo-
rithms, multi-tap delay offers a good showcase for the
power of generic programming.

Listing 4. Multi-tap delay
Mult i−Tap ( s i g d e l a y s )
{

Use Algo r i t hm
Mul t i−Tap = Reduce ( Add Map( Curry ( Delay s i g ) d e l a y s ) )

}

The processor described in Listing 4 can specialize to
feature any number of delay lines. The well known higher
order functions Map and Reduce define the functional lan-
guage equivalent to a loop[1]. Map applies a caller sup-
plied mapping function to all elements of a list. Reduce
combines the elements of a list using caller-supplied re-
duction function.

In this example, another higher order function, Curry,
is used to construct a new mapping function. Curry re-
duces the two argument Delay function into an unary func-
tion that always receives sig as the first argument. Curry
is an elementary operator in combinatory logic.

This curried delay is then used as a mapping function
to the list of delay line lengths, resulting in a bank of de-
lay lines, all of them being fed by the same signal source.
The outputs of the delay lines are finally summed, using
Reduce(Add ...). The remarkably short yet highly useful
routine is a good example of the power of functional ab-
straction in Kronos.

A reader familiar with developing real time signal pro-
cessing code might well be worried that such high level
abstraction will adversely affect the performance of the
resulting processor. Fortunately this is not the case, as

the language is designed around constraints that allow the
compiler to simplify all the complexity extremely well.
Detailed performance results are shown in Section 4.

2.3. Schroeder Reverberator

Expanding upon the concepts introduced in Section 2.2,
the classic diffuse field reverberator described by Schroeder
can be implemented. Listing 5 implements the classic
Schroeder reverberation[8]. Please refer to Section 4.1 for
sound examples.

Listing 5. Classic Schroeder Reverberator
Feedback−f o r−RT60 ( r t 6 0 d e l a y )
{

Feedback−f o r−RT60 = C r t : pow ( # 0 . 0 0 1 d e l a y / r t 6 0 )
}

B a s i c ( s i g r t 6 0 )
{

Use Algo r i t hm
a l l p a s s −params = ( ( 0 . 7 #221) ( 0 . 7 #75) )
de lay−t i m e s = (#1310 #1636 #1813 #1927)

f e e d b a c k s = Map (
Curry ( Feedback−f o r−RT60 r t 6 0 )
de lay−t i m e s )

comb−s e c t i o n = Reduce ( Add
Zip−With (

Curry ( Delay s i g )
f e e d b a c k s
de lay−t i m e s ) )

B a s i c = Cascade ( A l l p a s s−Comb comb−s e c t i o n a l l p a s s −
params )

}

All the tuning parameters are adapted from Schroeder’s
paper[8]. The allpass parameters are constant regardless
of reverberation time, while comb filter feedbacks are cal-
culated according to the specified reverberation time. The
comb section is produced similarily to the multi tap delay
in Section 2.2. Since the delay function requires an ex-
tra feedback parameter, we utilize the Zip-With function,
which is similar to Map, but expects a binary function and
two argument lists. The combination of Curry and Zip-
With generates a bank of comb filters, all fed by the same
signal, but separately configured by the lists of feedback
coefficients and delay times.

The series of allpass filters is realized by the higher or-
der Cascade function. This function accepts a parameter
cascading function, Allpass-Comb, signal input, sig, and
a list of parameters, allpass-params. The signal input is
passed to the cascading function along with the first ele-
ment of the parameter list. The function iterates through
the remaining parameters in allpass-params, passing the
output of the previous cascading function along with the
parameter element to each subsequent cascading function.
Perhaps more easily grasped than explained, this has the
effect of connecting several elements in series.

While the same effect could be produced with two
nested calls to Allpass-Comb, this formulation allows tun-
ing the allpass section by changing, inserting or removing
parameters from the allpass-params list, with no further
code changes, regardless of how many allpass filters are
specified.

designing synthetic reverberators in kronos 87



2.4. Feedback Delay Network Reverberator

Feedback delay network is a more advanced diffuse field
simulator, with the beneficial property of reflection den-
sity increasing as a function of time, similar to actual acous-
tic spaces. The central element of a FDN algorithm is the
orthogonal feedback matrix, required for discovering the
lossless feedback case and understanding the stability cri-
teria of the network. For a detailed discussion of the the-
ory, the reader is referred to literature[2]f.

Listing 6. Basic Feedback Delay Network reverberator
Use Algo r i t hm

Feedback−Mtx ( i n p u t )
{

Feedback−Mtx = i n p u t

( even odd ) = S p l i t ( i n p u t )
even−mtx = Recur ( even )
odd−mtx = Recur ( odd )

Feedback−Mtx = Append ( Zip−With ( Add even−mtx odd−mtx )
Zip−With ( Sub even−mtx odd−mtx ) )

}

B a s i c ( s i g r t 6 0 )
{

de lay−t i m e s = (#1310 #1636 #1813 #1927)
n o r m a l i z e−c o e f = −1. / S q r t ( Count ( de lay−t i m e s ) )
l o s s −c o e f s = Map( Curry ( Mul n o r m a l i z e−c o e f )

Map( Curry ( Feedback−f o r−RT60 r t 6 0 ) de lay−
t i m e s ) )

f eedback−v e c t o r = z −1( ’(0 0 0 0) Zip−With ( Mul l o s s −
c o e f s Feedback−Mtx ( de lay−v e c t o r ) ) )

de lay−v e c t o r = Zip−With ( Delay Map ( Curry ( Add s i g )
feedback−v e c t o r ) de lay−t i m e s )

B a s i c = Reduce ( Add Res t ( de lay−v e c t o r ) )
}

In Listing 6, functional recursion is utilized to gener-
ate a highly optimized orthogonal feedback matrix, the
Householder feedback matrix. The function Feedback-
Mtx recursively calls itself, splitting the signal vector in
two, computing element-wise sums and differences. This
results in an optimal number of operations required to
compute the Householder matrix multiplication[9].

Note that Feedback-Mtx has two return values; one of
them simply returning the argument input. This is a case
of parametric polymorphism[5], where the second, spe-
cialized form is used for arguments that can be split in
two.

The feedback paths in this example are outside the
bank of four delay lines. Instead, a simple unit delay re-
cursion is used to pass the four-channel output of the delay
lines through the feedback matrix and back into the delay
line inputs. Because all the delay lines are fed back into
all the others, the feedback must be handled externally.

The final output is produced by summing the outputs
of all the delay lines except the first one, hence Rest(delay-
vector). The first delay line is skipped due to very promi-
nent modes resulting from the characteristics of the House-
holder feedback.

3. TUNING

The implementations in Section 2 do not sound very im-
pressive; they are written for clarity. Further tuning and
a greater number of delay lines are required for a modern
reverberator. The basic principles of tuning these two al-
gorithms are presented in the following Sections 3.1 and
3.2. The full code and sound examples can be accessed on
the related web page[4].

3.1. Tuning the Schroeder-Moorer Reverberator

A multichannel reverberator can be created by combin-
ing several monophonic elements in parallel with slightly
different tuning parameters. Care must be taken to main-
tain channel balance, as precedence effect may cause the
reverberation to be off-balance if the delays on one side
are clearly shorter. Reflection density can be improved by
increasing the number of comb filters and allpass filters
while maintaining the basic parallel-serial composition.
Frequency-dependant decay can be modeled by utilizing
loss filters on the comb filter feedback path, and overrall
reverberation tone can be altered by filtering and equaliza-
tion.

The tuned example[4] built for this paper features 16
comb filters and 4 allpass filters for both left and right
audio channel. Onepole lowpass filters are applied to the
comb filter feedback paths and further to statically adjust
the tonal color of reverberation.

3.2. Tuning the Feedback Delay Network Reverbera-
tor

Likewise, the number of delay lines connected in the feed-
back network can be increased. Frequency dependent de-
cay is modelled similarily to the Schroeder-Moorer rever-
berator. Since a single network produces one decorrelated
output channel for each delay line in the network, multi-
channel sound can be derived by constructing several dif-
ferent sums from the network outputs. Allpass filters can
be used to further increase sound diffusion.

The tuned example[4] features 16 delay lines connected
in a Householder feedback matrix. Each delay line has a
lowpass damping filter as well as an allpass filter in the
feedback path to improve the overrall sound. A static tone
adjustment is performed on the input side of the delay net-
work.

4. EVALUATION

Firstly, the results of implementing synthetic reverbera-
tors in Kronos is evaluated. Evaluation is attempted ac-
cording to three criteria; how good the resulting rever-
berator sounds, how well suited was the Kronos language
to program it and finally, the real time CPU performance
characteristics of the resulting processor. The following
abbreviations, in Table 1 are used to refer to the various
processors described in this paper.

88 designing synthetic reverberators in kronos



Key Explanation
S4 Classic Schroeder reverberator, Section 2.3
S16 Tuned Schroeder reverberator [4]
FDN4 4-dimensional Feedback Delay Network, Section 2.4
FDN16 16-dimensional tuned FDN [4]

Table 1. Keys used for the processors

4.1. Sound

Sound quality is highly subjective measure; therefore, the
reader is referred to the actual sound examples[ref]. Some
observations by the author are listed here.

Unsuprisingly, S4 is showing its age; the reverberation
is rather sparse and exhibits periodicity. The modes of the
four comb filters are also spread out enough that they are
perceptible as resonances. However, the sound remains
respectable for the computational resources it consumes.

FDN4 is also clearly not sufficient by itself. The dif-
fuse tail is quite an improvement over s-cl, although some
periodicity is still perceived. The main problem is the lack
of diffusion in the early tail. This is audible as a sound
resembling flutter echo in the very beginning of the rever-
beration.

S16 and FDN16 both sound quite satisfying with the
added diffusion, mode density and frequency dependant
decay. FDN16 is preferred by the author, as the mid-tail
evolution of the diffuse field sounds more convincing and
realistic, probably due to the increasing reflection density.

4.2. Language

It is our contention that all reverberation algorithms can be
clearly and concisely represented by Kronos. Abstraction
is used to avoid manual repetition such as creating all the
delay lines one by one. The delay operator inherent in the
language allows the use of higher order functions to create
banks and arrays of delay lines and filters. In the case of
the feedback delay network, a highly effective recursive
definition of the Householder feedback matrix could be
used.

4.3. Performance

The code produced by Kronos exhibits excellent perfor-
mance characteristics. Some key features of the reverber-
ators are listed in Table 2, along with the time it took to
process the test audio.

A realtime CPU stress is computed by dividing the
processing time with the play time of the audio, 5833 mil-
liseconds in this test case. The processor used for the
benchmark is an Intel Core i7 running at 2.8GHz. The
CPU load caused by the algorithms presented ranges from
1.2 permil to 1.5 percent.

5. CONCLUSION

This paper presented a novel signal processing language
and implementations of synthetic reverberation algorithms

Key Delays Allpass LPFs Fmt Time CPU
S4 4 2 0 mono 6.9ms 0.12%
S16 32 8 33 stereo 89ms 1.5%
FDN4 4 0 0 mono 7.1ms 0.12%
FDN16 16 20 17 stereo 84ms 1.4%

Table 2. Features and performance of the processors

in it. The algorithms were then tuned and evaluated by
both sound quality and performance criteria.

The presented algorithms could be implemented on a
high level, utilizing abstractions of functional program-
ming. Nevertheless, the resulting audio processors exhibit
excellent performance characteristics.

Kronos is still in development into a versatile tool, to
allow real time processing as well as export to languages
such as C. Graphical user interface is forthcoming. Kro-
nos is also going to be used as the next-generation synthe-
sizer for the PWGL[3] environment. Interested parties are
invited to contact the author should they be interested in
implementing their signal processing algorithms in Kro-
nos.

6. REFERENCES

[1] P. Hudak, “Conception, evolution, and application of
functional programming languages,” ACM Comput-
ing Surveys, vol. 21, no. 3, pp. 359–411, 1989.

[2] A. Jot Jean-Marc; Chaigne, “Digital Delay Networks
for Designing Artificial Reverberators,” in Audio En-
gineering Society Convention 90, 1991.

[3] M. Laurson, M. Kuuskankare, and V. Norilo, “An
Overview of PWGL, a Visual Programming Environ-
ment for Music,” Computer Music Journal, vol. 33,
no. 1, pp. 19–31, 2009.

[4] V. Norilo, “ICMC2011 Examples,” 2011. [On-
line]. Available: http://www.vesanorilo.com/kronos/
icmc2011

[5] V. Norilo and M. Laurson, “A Method of Generic Pro-
gramming for High Performance DSP,” in DAFx-10
Proceedings, Graz, Austria, 2010, pp. 65–68.

[6] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[7] M. Puckette, “Pure data: another integrated computer
music environment,” in Proceedings of the 1996 In-
ternational Computer Music Conference, 1996, pp.
269–272.

[8] M. R. Schroeder, “Digital Simulation of Sound Trans-
mission in Reverberant Spaces,” Journal of the Acous-
tical Society of America, vol. 45, no. 1, p. 303, 1969.

[9] J. O. Smith, “A New Approach to Digital Reverber-
ation Using Closed Waveguide Networks,” 1985, pp.
47–53.

designing synthetic reverberators in kronos 89





P5 K R O N O S V S T – T H E P R O G R A M M A B L E
E F F E C T P L U G I N

Digital Audio Effects. Kronos Vst – the Programmable Effect Plugin. In Proceedings of the Interna-
tional Conference on Digital Audio Effects, Maynooth, 2013

91



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

KRONOS VST – THE PROGRAMMABLE EFFECT PLUGIN

Vesa Norilo

Department of Music Technology
Sibelius Academy
Helsinki, Finland

vnorilo@siba.fi

ABSTRACT

This paper introduces Kronos VST, an audio effect plugin con-
forming to the VST 3 standard that can be programmed on the fly
by the user, allowing entire signal processors to be defined in real
time. A brief survey of existing programmable plugins or develop-
ment aids for audio effect plugins is given. Kronos VST includes
a functional just in time compiler that produces high performance
native machine code from high level source code. The features of
the Kronos programming language are briefly covered, followed
by the special considerations of integrating user programs into the
VST infrastructure. Finally, introductory example programs are
provided.

1. INTRODUCTION

There are several callback-architecture oriented standards which
allow third parties to extend conformant audio software packages.
These extensions are colloquially called plugins. The plugin con-
cept was popularized by early standards such as VST by Stein-
berg. This paper discusses a plugin implementation that conforms
to VST 3. Other widely used plugin standards include Microsoft
DirectX, Apple Audio Unit and the open source LADSPA. Pure
Data[1] extensions could also be considered plugins.

As customizability and varied use cases are always encoun-
tered in audio software, it is no suprise that the plugin concept is
highly popular. Compared to a complete audio processing soft-
ware package, developing a plugin requires less resources, allow-
ing small developers to produce specialized signal processors. The
same benefit is relevant for academic researchers as well, who of-
ten demonstrate a novel signal processing concept in context in the
form of a plugin.

The canonical way of developing a plugin is via C or C++.
Since musical domain expertise is highly critical in developing
digital audio effects, there is often a shortage of developers who
have both the requisite skill set and are able to implement audio
effects in C++. One way to address this problem is to develop a
meta-plugin that implements some of the requisite infrastructure
while leaving the actual algorithm to the end user, with the aim
of simplifying the development process and bringing it within the
reach of domain experts who are not necessarily professional pro-
grammers.

This paper presents Kronos VST, an implementation of the
programmable plugin concept utilizing the Kronos signal process-
ing language and compiler[2]. The plugin integrates the entire
compiler package, and produces native machine code from tex-
tual source code while running inside a VST host, without an edit-
compile-debug cycle that is required for C/C++ development.

The rest of the paper is organized as follows; Section 2, Pro-
grammable Plugins and Use Cases, discusses the existing imple-
mentations of the concept. Section 3, Kronos Compiler Technol-
ogy Overview, briefly discusses the language supported by the plu-
gin. Section 4, Interfacing User Code and VST, discusses the in-
terface between the VST environment and user code. Section 5,
Conclusions, summarizes and wraps up the paper, while some ex-
ample programs are shown in Appendix A.

2. PROGRAMMABLE PLUGINS AND USE CASES

2.1. Survey of Programmable Plugins

2.1.1. Modular Synthesizers

Modular synthesizer plugins are arguably programmable, much as
their analog predecessors. In this case, the user is presented with
a set of synthesis units that can be connected in different configu-
rations. A notable example of such a plugin is the Arturia Moog
Modular.

Native Instruments Reaktor represents a plugin more flexible
and somewhat harder to learn. It offers a selection of modular
synthesis components but also ones that resemble programming
language constructs rather than analog synthesis modules.

A step further is the Max/MSP environment by Cycling’74
in its various plugin forms. The discontinued Pluggo allowed
Max/MSP programs to be used as plugins, while Max for Live is its
contemporary sibling, although available exclusively for the Able-
ton Live software.

2.1.2. Specialist Programming Environments

In addition to modular synthesizers, several musical programming
environments have been adapted for plugins. CSoundVST is a
CSound[3] frontend that allows one to embed the entire CSound
language into a VST plugin. More recently, Cabbage[4] is a toolset
for compiling CSound programs into plugin format.

Faust[5], the functional signal processing language, can be
compiled into several plugin formats. It has traditionally relied
in part on a C/C++ toolchain, but the recent development of lib-
faust can potentially remove this dependency and enable a faster
development cycle.

Cerny and Menzer report an interesting application of the com-
mercial Simulink signal processing environment to VST Plugin
generation[6].

DAFX-1

92 kronos vst – the programmable effect plugin



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

2.2. Use Cases for Programmable Plugins

The main differences between developing a plugin with an exter-
nal tool versus supplying an user program to the plugin itself boil
down to development workflow. The compilation cycle required
for a developer to obtain audio feedback from a code change is
particularily burdensome in the case of plugin development. In
addition to the traditional edit-compile-run cycle, where compila-
tion can take minutes, plugin development often requires the host
program to be shut down and restarted, or at least forced to rescan
and reload the modified plugin file.

In contrast, if changes can be made on the fly, while the plugin
is running, the feedback cycle is almost instantaneous. This is what
the KronosVST plugin aims to do. Several use cases motivate such
a scheme;

2.2.1. Rapid Prototyping and Development

Rapid prototyping traditionally means that the program is initially
developed in a language or an environment that focuses primarily
on developer productivity. In traditional software design, this can
mean a scripting language that is developer friendly but perhaps
not as performant or capable as C/C++. In the case of audio pro-
cessors, rapid prototyping can take place in, for example, a graph-
ical synthesis environment or a programmable plugin. Once the
prototyping is complete, the product can be rewritten in C/C++ for
final polish and performance.

2.2.2. Live Coding

Live coding is programming as a performance art. In the audio
context, the audience can see the process of programming as well
as hear the output in real time. The main technical requirement
for successful live coding is that code changes are relatively in-
stantaneous. Also, the environment should be robust to deal with
programming errors in a way that doesn’t bring the performance to
a halt. KronosVST aims to support live coding, although the main
focus of this article is rapid development.

2.3. Motivating Kronos VST

As programming languages evolve, it becomes more conceivable
that the final rewrite in a low level language like C may no longer
be necessary. This is one of the main purposes of the Kronos
project. Ideally, the language should strike a correct balance of
completeness, capability and performance to eliminate the need to
drop down to C++ for any of these reasons.

The benefit of this approach is a radical improvement in devel-
oper productivity – but the threat is, as always, that the specialist
language may not be good enough for every eventuality and that
C++ might still be needed.

The main disincentive for developers to learn a new program-
ming language is the perception that the time invested might not
yield sufficient benefits. Kronos VST aims to present the language
in a manner where interested parties can quickly evaluate the sys-
tem and its relative merit, look at example programs and audition
them in context.

3. KRONOS TECHNOLOGY OVERVIEW

This section presents a brief overview of the technology behind
KronosVST. For detailed discussion on the programming language,

the reader is referred to previous work [7] [8] [2].

3.1. Programming Language

Kronos as a programming language is a functional language[9]
that deals with signals. From existing systems, Faust[5] is likely
the one that it resembles the most. Both systems feature an expres-
sive syntax and compilation to high performance native code. In
the recent developments, both have converged on the LLVM[10]
backend which provides just in time and optimization capabilities.

As the main differentiators, Kronos aims to offer a type system
that extends the metaprogramming capabilities considerably[8].
Also, Kronos offers an unified signal model[7] that allows the
user to deal with signals other than audio. Recent developments
to Faust enhance its multirate model[?], but event-based streams
remain second class. Kronos is also designed, from the ground up,
for compatibility with visual programming.

On the other hand, Faust is a mature and widely used system,
successfully employed in many research projects. In comparison,
Kronos is still quite obscure and untested.

3.2. Libraries

The principle behind Kronos is that there are no built-in unit gener-
ators. The signal processing library that it comes with is in source
form and user editable. By extension, it means that the library
components cannot rely on any “magic tricks” with special com-
piler support. User programs are first class citizens, and can sup-
plant or completely replace the built-in library.

Also due to the nature of the optimizing compiler built into
Kronos, the library can remain simpler than most competing so-
lutions. Functional polymorphism is employed so that signal pro-
cessing components can adapt to their context. It supports generic
programming, which enables a single processor implementation
to adapt and optimize itself to various channel configurations and
sample formats. With a little imagination this mechanism can be
used to achieve various sophisticated techniques – facilities such
as currying and closures in the standard library are realized by em-
ploying the generic capabilities of the compiler.

As Kronos is relatively early in its development, the standard
library is continuously evolving. At the moment it provides func-
tional programming support for the map-reduce paradigm as well
as fundamentals such as oscillators, filters, delay elements and in-
terpolators.

3.3. Code Generation

Kronos is a Just in Time compiler[11] that performs the conversion
of textual source code to native machine code, to be immediately
executed. In the case of a plugin version, the plugin acts as the
compiler driver, feeding in the source code entered via the plugin
user interface and connecting the resulting native code object to
the VST infrasturcture.

3.3.1. Recent Compiler Developments

The standalone Kronos compiler is currently freely available in its
beta version. This version features compilation and optimization
of source code to native x86 machine code or alternatively transla-
tion into C++.

Currently, the compiler is being rewritten, with focus on com-
pile time performance. The major improvement is in the case of

DAFX-2

kronos vst – the programmable effect plugin 93



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

extended multirate DSP, where various buffering techniques can
be employed. The language semantics seamlessly support cases
where a signal frame is anything from a single sample to a large
buffer of sound, but the compile time could become unacceptable
as frame size was increased. The major enhancement in the new
compiler version is the decoupling of vector size and compilation
time, resulting from a novel redundancy algorithm in the polymor-
phic function specializer.

The design of the compiler is also revised and simplified, aim-
ing to an eventual release of the source code under a free software
license. As the code generator backend, the new version relies on
LLVM[10] for code generation instead of a custom x86 solution;
greatly increasing the number of available compile targets.

3.3.2. Optimization and Signal Rate Factorization

The aim of the Kronos project is to have the source code to look
like the way humans think about signal processing, and the gener-
ated machine code to perform like that written by a decent devel-
oper. This is the goal of most compiler systems, but very hard to
accomplish, as in most systems the developer needs to intervene
on relatively low level of abstraction to enforce that the generated
machine code is close to optimal.

Kronos aims to combine high level source code with high per-
formance native code. The programs should be higher level than
C++ to make the language easier for musicians, as well as faster
to write. However, if the generated code is significantly slower, a
final rewrite in C++ might still be required, defeating the purpose
of rapid development.

The proposed solution is to narrow down the capabilities of
the language to fulfill the requirements of signal processor devel-
opment as narrowly as possible. The Kronos language is by design
statically typed, strictly side effect free and deterministic, which is
well suited for signal processing. This allows the compiler to make
a broad range of assumptions about the code, and apply transfor-
mations that are far more radical than the ones a C++ compiler can
safely do.

A further important example of DSP-specific optimization is
the multirate problem. Languages such as C++ require the devel-
oper to specify a chronological order in which the program ex-
ecutes. In the case of multirate signal processing, this requires
manual and detailed handling of various signal processors that up-
date synchronously or in different orders.

As a result, many frameworks gloss over the multirate prob-
lem by offering a certain set of signal rates from which the user
may – and has to – choose from. Traditionally, this manifests
as similar-but-different processing units geared either for control
or audio rate processing, or maybe handling discrete events such
as MIDI. This increases the vocabulary an user has to learn, and
makes signal processing libraries harder to maintain.

Kronos aims to solve the multirate problem, combined with
the event handling problem, by defining the user programs as hav-
ing no chronology. This is inherent to the functional program-
ming model. Instead of time, the programs model data flow; data
flow between processing blocks is essentially everything that sig-
nal processing boils down to.

Each data flow is semantically synchronous. Updates to the in-
puts of the system trigger recomputation of the results that depend
on them, with the signal graph being updated accordingly. Special
delay primitives in the language allow signal flow graphs to con-
nect to previous update frames and provide for recursive loops and

delay effects.
Since the inputs and the data flows that depend on them are

known, the compiler is able to factorize user programs by their
inputs. It can produce update entry points that respond to a certain
set of system inputs, and optimize away everything that depends on
inputs outside of the chosen set. Each system input then becomes
an entry point that activates a certain subset of the user program –
essentially, a clock source.

Because the code is generated on the fly, this data flow fac-
torization has no performance impact, which renders it suitable to
use at extreme signal rates such as high definition audio as well as
sparse event streams such as MIDI. Both signal types become sim-
ple entry points that correspond to either an audio sample frame or
a MIDI event.

3.3.3. Alternative Integration Strategies

In addition to plugin format, the Kronos compiler is available as a
C++-callable library. There is also a command line compile server
that responds to OSC[12] commands and is capable of audio i/o.
The main purpose for the compile server is to act as a back end for
a visual patching environment.

The compiler generates code modules that implement an ob-
ject oriented interface. The user program is compiled into a code
module with a set of C functions, covering allocation and initial-
ization of a signal processor instance, as well as callbacks for plug-
ging data into its external inputs and triggering various update rou-
tines. It is also possible to export this module as either LLVM[10]
intermediate representation or C-callable object code.

4. INTERFACING USER CODE AND VST

To facilitate easy interaction between user code and the VST host
application, various VST inputs and outputs are exposed as user-
visible Kronos functions. These functions appear in a special pack-
age called IO, which the plugin generates according to the current
processing context. The user entry point is a function called Main,
which is called by the base plugin to obtain a frame of audio out-
put.

4.1. Audio I/O

A VST plugin can be used in a variety of different audio I/O con-
texts. The VST3 standard allows for any number of input and out-
put buses to and from the plugin. Each of these buses is labeled
for semantic meaning and can contain an arbitrary number of chan-
nels.

The typical use for multiple input buses is to allow for sidechain
input to a plugin. Multiple output buses, on the other hand, can be
used to inform the host that multiple mixer channels could be allo-
cated for the plugin output. The latter is mostly used in the context
of instrument plugins.

The Kronos VST plugin exposes the main input bus as a func-
tion called IO:Audio-In. The return type of this function is a tuple
containing all the input channels to the main bus of the plugin. The
sidechain bus is exposed as IO:Audio-Sidechain. Both functions
act as external inputs to the user program, propagating updates at
the current VST sample rate.

Currently, only a single output bus is supported. The channel
count of the output is automatically inferred from the Main func-
tion.

DAFX-3

94 kronos vst – the programmable effect plugin



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

4.1.1. Audio Bus Metadata

Programs that need to know the update interval of a given data flow
can interrogate it with the Kronos reactive metadata system. The
sample rate of the data flow in question becomes another external
input to the program with its own update context.

The Kronos VST plugin supplies update interval data for the
audio buses to the user program. On sample rate changes, the reac-
tive system can automatically update any computation results that
depend on it.

4.1.2. Multichannel Datatype

Polymorphism within the Kronos VST plugin allows user pro-
grams to be flexible in their channel configuration. Many signal
processors have implementations that do not vary significantly on
the channel count. A processor such as an equalizer would just
contain a set of identical filter instances to process a bundle of
channels.

For such cases, the Kronos VST library comes with a data
type that represents a multichannel sample frame. An atom of
this type can be constructed from a tuple of samples by a call to
Frame:Cons, which packages any number of channels into a single
frame. These frames have arithmetic with typical vector seman-
tics; operations are carried out for each element pair for matching
multichannel frames.

The Frame type also has an upgrade coercion semantic. There
is a specialization of the Implicit-Coerce function that can promote
a scalar number into a multichannel duplicate. The Kronos runtime
library widely calls the implicit coercion function to resolve type
mismatches. This means that the compiler is able to automatically
promote a scalar to a multichannel type. For example, whenever a
multichannel frame is multiplied by a gain coefficient, each chan-
nel of the frame is processed without explicit instructions from the
user program.

Because Kronos programs have only implicit state, this exten-
sion carries over to filter- and delay-like operations. The compiler
sees a delay operation on a multichannel frame and allocates state
accordingly for each channel. Therefore, the vast majority of algo-
rithms can operate on both monophonic samples and multichannel
frames without any changes to the user code.

4.2. User Interface

The VST user interface is connected to the user program via calls
to IO:Parameter. This function receives the parameter label and
range. The IO package constructs external inputs and triggers that
are uniquely identified by all the parameter metadata, which al-
lows for the base plugin infrastructure to read back both parameter
labels and ranges.

Any external input in the user code that has the correct la-
bel and range metadata attached is considered a parameter by the
base plugin. At the moment, each parameter is assigned a slider
in the graphical user interface. In the future, further metadata may
be added to support customizing the user interface with various
widgets such as knobs or XY-pads. An example user interface is
shown in Figure 1.

The parameters appear as external inputs from the user code
perspective, and work just like the audio input, automatically prop-
agating a signal clock that ticks whenever a user interaction or se-
quencer automation causes the parameter value to be updated.

Figure 1: An Example of a Generated VST Plugin Interface

However, the parameters are assigned a lower reactive priority
than the audio. Any computations that depend on both audio and
parameter updates ignore the parameters and lock solely to audio
clock.

This prevents parameter updates from causing additional out-
put clock ticks – in effect, the user interface parameters terminate
inside the audio processor at the point where their data flow merges
with the audio path. This is analogous to how manually factored
programs tend to cache intermediate results such as filter coeffi-
cients that result from the user interface and are consumed by the
audio processor.

4.3. MIDI

MIDI input is expressed as an event stream, with a priority be-
tween parameters and audio. Thus, MIDI updates will override
parameter updates but submit to audio updates.

The MIDI stream is expressed as a 32-bit integer that packs
the three MIDI bytes. Accessor functions MIDI:Event:Status(),
MIDI:Event:A() and MIDI:Event:B() can be called to retrieve the
relevant MIDI bytes.

MIDI brings up a relevant feature in the Kronos multirate sys-
tem; dynamic clock. MIDI filtering can be implemented by in-
hibiting updates that do not conform to the desired MIDI event
pattern. The relevant function is Reactive:Gate(filter sig) which
propagates the signal sig updates if and only if filter is true. A se-
ries of Gates can be used to deploy different signal paths to deal
with note on, note off and continuous controller events. Later, the
updates can be merged with Reactive:Merge().

5. CONCLUSIONS

This paper presented an usage scenario for Kronos, a signal pro-
cessing language. Recent developments in Kronos include a com-
piler rewrite from scratch. Kronos VST, a programmable plugin,
is the first public release powered by the new version.

The programmable plugin allows an user to deploy and mod-
ify a signal processing program inside a digital audio workstation
while it is running. It is of interest to programmers and researchers
attracted to rapid prototyping or development of audio processor
plugins. The instant feedback is also useful to live coders.

The Kronos VST plugin is designed to stimulate interest in
the Kronos programming language. As such, it is offered free of
charge to interested parties. The plugin can be used as is, or as
a development tool – a finished module may be exported as C-
callable object code, to be integrated in any development project.

A potential further development is an Apple Audio Unit ver-
sion. The host compatibility of the plugin will be enhanced in
extended field tests. Pertaining to the mainline Kronos Project, the
libraries shipped with the plugin as well as the learning materials
are under continued development. As the plugin and the compiler
technology are very recent, the program examples at this point are

DAFX-4

kronos vst – the programmable effect plugin 95



Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13), Maynooth, Ireland, September 2-4, 2013

introductory. More sophisticated applications are forthcoming, to
better demonstrate the capabilities of the compiler.

A. EXAMPLE PROGRAMS

A.1. Tremolo Effect

Listing 1: Tremolo Source
Saw(freq) {

inc = IO:Audio-Clock(freq / IO:Audio-Rate())
next = z-1(0 wrap + inc)
wrap = next - Floor(next)
Saw = 2 * wrap - 1

}

Main() {
freq = IO:Parameter("Tremolo Freq" #0.1 #5 #20)
(l r) = IO:Audio-In()
gain = Abs(Saw(freq))
Main = (l * gain r * gain)

}

A.2. Parametric EQ

Listing 2: Parametric EQ Source
/* Coefficient computation routine ’EQ-Coefs’ omitted

for brevity */
EQ-Band(x0 a0 a1 a2 b1 b2) {
y1 = z-1(init(x0 #0) y0)
y2 = z-1(init(x0 #0) y1)
y0 = x0 - b1 * y1 - b2 * y2
EQ-Band = a0 * y0 + a1 * y1 + a2 * y2

}

EQ-Params(num) {
EQ-Params = (
IO:Parameter(String:Concat("Gain " num) #-12 #0 #12)
IO:Parameter(String:Concat("Freq " num) #20 #2000

#20000)
IO:Parameter(String:Concat("Q " num) #0.3 #3 #10))

}

Main() {
input = Frame:Cons(IO:Audio-In())
params = Algorithm:Map(band => EQ-Coefs(EQ-Params(band

)) [#1 #2 #3 #4])
Main = Algorithm:Cascade(Fitler:Biquad input params)

}

A.3. Reverberator

Listing 3: Simple Mono Reverb
RT60-Fb(delay rt60) {
RT60-Fb = Crt:pow(0.001 delay / rt60)

}

Main() {
Use Algorithm /* for Map and Reduce */
/* simplification: input is mono sum */
input = Reduce(Add IO:Audio-In())
rt60 = IO:Parameter("Reverb Time" #0.1 #3 #10) * IO:

Audio-Rate()
mix = IO:Parameter("Mix" #0 #0.5 #1)

/* settings adapted from the Schroeder paper */
allpass-params = [(0.7 #221) (0.7 #75)]
delay-times = [#1310 #1636 #1813 #1927]

/* compute feedbacks and arrange delay line params */
delay-params = Map(d => (d RT60-Fb(d rt60))

delay-times)

/* compute parallel comb section */
comb-sec = Map((dl fb) => Delay(input dl fb)

delay-params)

/* mono sum comb filters and mix into input */
sig = (1 - mix) * input +

mix * Reduce(Add comb-sec) / 4

Main = (sig sig)
}

B. REFERENCES

[1] M Puckette, “Pure data: another integrated computer mu-
sic environment,” in Proceedings of the 1996 International
Computer Music Conference, 1996, pp. 269–272.

[2] Vesa Norilo, “Introducing Kronos - A Novel Approach to
Signal Processing Languages,” in Proceedings of the Linux
Audio Conference, Frank Neumann and Victor Lazzarini,
Eds., Maynooth, Ireland, 2011, pp. 9–16, NUIM.

[3] Richard Boulanger, The Csound Book, vol. 309, MIT Press,
2000.

[4] Rory Walsh, “Audio Plugin development with Cabbage,”
in Proceedings of the Linux Audio Conference, Maynooth,
Ireland, 2011, pp. 47–53, Linuxaudio.org.

[5] Y Orlarey, D Fober, and S Letz, “Syntactical and semantical
aspects of Faust,” Soft Computing, vol. 8, no. 9, pp. 623–632,
2004.

[6] Robert Cerny and Fritz Menzer, “Convention e-Brief The
Audio Plugin Generator: Rapid Prototyping of Audio DSP
Algorithms,” in Audio Engineering Society Convention,
2012, vol. 132, pp. 3–6.

[7] Vesa Norilo and Mikael Laurson, “Unified Model for Au-
dio and Control Signals,” in Proceedings of ICMC, Belfast,
Northern Ireland, 2008.

[8] Vesa Norilo and Mikael Laurson, “A Method of Generic
Programming for High Performance DSP,” in DAFx-10 Pro-
ceedings, Graz, Austria, 2010, pp. 65–68.

[9] Paul Hudak, “Conception, evolution, and application of
functional programming languages,” ACM Computing Sur-
veys, vol. 21, no. 3, pp. 359–411, 1989.

[10] C Lattner and V Adve, “LLVM: A compilation frame-
work for lifelong program analysis & transformation,” Inter-
national Symposium on Code Generation and Optimization
2004 CGO 2004, vol. 57, no. c, pp. 75–86, 2004.

[11] J Aycock, “A brief history of just-in-time,” ACM Computing
Surveys, vol. 35, no. 2, pp. 97–113, 2003.

[12] Matthew Wright, Adrian Freed, and Ali Momeni, “Open-
Sound Control: State of the Art 2003,” in Proceedings of
NIME, Montreal, 2003, pp. 153–159.

DAFX-5

96 kronos vst – the programmable effect plugin



P6 R E C E N T D E V E LO P M E N T S I N T H E
K R O N O S P R O G R A M M I N G L A N G U A G E

Vesa Norilo. Recent Developments in the Kronos Programming Language. In Proceedings of the
International Computer Music Conference, Perth, 2013

97



RECENT DEVELOPMENTS IN THE KRONOS PROGRAMMING
LANGUAGE

Vesa Norilo

Sibelius Academy
Centre for Music & Technology, Helsinki, Finland

mailto:vnorilo@siba.fi

ABSTRACT

Kronos is a reactive-functional programming environ-
ment for musical signal processing. It is designed for mu-
sicians and music technologists who seek custom signal
processing solutions, as well as developers of audio com-
ponents.

The chief contributions of the environment include a
type-based polymorphic system which allows for process-
ing modules to automatically adapt to incoming signal
types. An unified signal model provides a programming
paradigm that works identically on audio, MIDI, OSC and
user interface control signals. Together, these features en-
able a more compact software library, as user-facing prim-
itives are less numerous and able to function as expected
based on the program context. This reduces the vocabu-
lary required to learn programming.

This paper describes the main algorithmic contribu-
tions to the field, as well as recent research into improv-
ing compile performance when dealing with block-based
processes and massive vectors.

1. INTRODUCTION

Kronos is a functional reactive programming language[8]
for signal processing tasks. It aims to be able to model
musical signal processors with simple, expressive syntax
and very high performance. It consists of a program-
ming language specification and a reference implemen-
tation that contains a just in time compiler along with a
signal I/O layer supporting audio, OSC[9] and MIDI.

The founding principle of this research project is to re-
duce the vocabulary of a musical programming language
by promoting signal processor design patterns to integrated
language features. For example, the environment auto-
mates signal update rates, eradicating the need for similar
but separate processors for audio and control rate tasks.

Further, signals can have associated type semantics.
This allows an audio processor to configure itself to suit an
incoming signal, such as mono or multichannel, or vary-
ing sample formats. Together, these language features
serve to make processors more flexible, thus requiring a
smaller set of them.

This paper describes the state of the Kronos compiler
suite as it nears production maturity. The state of the
freely available beta implementation is discussed, along

with issues that needed to be addressed in recent devel-
opment work – specifically dealing with support for mas-
sive vectors and their interaction with heterogenous signal
rates.

As its main contribution, this paper presents an algo-
rithm for reactive factorization of arbitrary signal proces-
sors. The algorithm is able to perform automatic signal
rate optimizations without user intervention or effort, han-
dling audio, MIDI and OSC signals with a unified set of
semantics. The method is demonstrated via Kronos, but
is applicable to any programming language or a system
where data dependencies can be reliably reasoned about.
Secondly, this method is discussed in the context of het-
erogenous signal rates in large vector processing, such as
those that arise when connecting huge sensor arrays to
wide ugen banks.

This paper is organized as follows; in Section 2, Kro-
nos Language Overview, the proposed language and com-
piler are briefly discussed for context. Section 3 describes
an algorithm that can perform intelligent signal rate fac-
torization on arbitrary algorithms. Section 4, Novel Fea-
tures, discusses in detail the most recent developments.
Finally, the conclusions are presented in Section 5.

2. KRONOS LANGUAGE OVERVIEW

Kronos programs can be constructed as either textual source
code files or graphical patches. The functional model is
well suited for both representations, as functional pro-
grams are essentially data flow graphs.

2.1. Functional Programming for Audio

Most of a Kronos program consists of function definitions,
as is to be expected from a functional programming lan-
guage. Functions are compositions of other functions, and
each function models a signal processing stage. Per usual,
functions are first class and can be passed as inputs to
other, higher order functions.

This allows traditional functional programming sta-
ples such as map, demonstrated in Figure 1. In the ex-
ample, a higher order function called Algorithm:Map re-
ceives from the right hand side a set of control signals,
and applies a transformation specified on the left hand
side, where each frequency value becomes an oscillator

98 recent developments in the kronos programming language



Figure 1. Mapping a set of sliders into an oscillator bank

at that frequency. For a thorough discussion, the reader is
referred to previous work[3].

2.2. Types and Polymorphism as Graph Generation

Kronos allows functions to attach type semantics to sig-
nals. Therefore the system can differentiate between, say,
a stereo audio signal and a stream of complex numbers. In
each case, a data element consists of two real numbers, but
the semantic meaning is different. This is accomplished
by Types. A type annotation is essentially a semantic tag
attached to a signal of arbitrary composition.

Library and user functions can then be overloaded based
on argument types. Signal processors can be made to react
to the semantics of the signal they receive. Polymorphic
functions have powerful implications for musical applica-
tions; consider, for example, a parameter mapping strat-
egy where data connections carry information on parame-
ter ranges to which the receiving processors can automat-
ically adjust to.

2.2.1. Type Determinism

Kronos aims to be as expressive as possible at the source
level, yet as fast as possible during signal processing. That
is why the source programs are type generic, yet the run-
time programs are statically typed. This means that when-
ever a Kronos program is launched, all the signal path
types are deduced from the context. For performance rea-
sons, they are fixed for the duration of a processing run,
which allows polymorphic overload resolution to happen
at compile time.

This fixing is accomplished by a mechanism called
Type Determinism. It means that the result type of a func-
tion is uniquely determined by its argument types. In
other words, type can affect data, but not vice versa. This
leads to a scheme where performant, statically typed sig-
nal graphs can be generated from a type generic source
code. For details, the reader is referred to previous work[6].

2.3. Multirate Processing

Kronos models heterogenous signal rates as discrete up-
date events within continuous “staircase” signals. This
allows the system to handle sampled audio streams and
sparse event streams with an unified[5] signal model. The

entire signal graph is synchronous and the reactive update
model imposes so little overhead that it is entirely suitable
to be used at audio rates.

This is accomplished by defining certain active exter-
nal inputs to a signal graph. The compiler analyzes the
data flow in order to determine a combination of active
inputs or springs that drive a particular node in the graph.

Subsequently, different activity states can be modeled
from the graph by only considering those nodes that are
driven by a particular set of springs. This allows for gen-
erating a computation graph for any desired set of external
inputs, leaving out any operations whose output signal is
unchanged during the activation state.

For example, user interface elements can drive filter
coefficient computations, while the audio clock drives the
actual signal processing. However, there’s no need to sep-
arate these sections in the user program. The signal flow
can be kept intact, and the distinction between audio and
control rate becomes an optimization issue, handled by
the compiler, as opposed to a defining the structure of the
entire user program.

3. REACTIVE FUNCTIONAL AS THE
UNIVERSAL SIGNAL MODEL

3.1. Dataflow Analysis

Given an arbitrary user program, all signal data flows should
be able to be reliably detected. For functional program-
ming languages such as Kronos or Faust[7], this is triv-
ial, as all data flows are explicit. The presence of any
implicit data flows, such as the global buses in systems
like SuperCollider[1] can pose problems for the data flow
analysis.

3.2. Reactive Clock Propagation

The general assumption is that a node is active whenever
any of its upstream nodes are active. This is because log-
ical and arithmetic operations will need to be recomputed
whenever any of their inputs change.

However, this is not true of all nodes. If an operation
merely combines unchanged signals into a vectored sig-
nal, it is apposite to maintain separate clocking records
for the components of the vectored signal rather than have
all the component clocks drive the entire vector. When the
vector is unpacked later, subsequent operations will only
join the activation states of the component signals they ac-
cess.

Similar logic applies to function calls. Since many
processors manifest naturally as functions that contain mixed
rate signal paths, all function inputs should preferably have
distinct activation states.

3.3. Stateful Operations and Clock

The logic outlined in section 3.2 works well for strictly
functional nodes – all operations whose output is uniquely
determined by their inputs rather than any state or mem-
ory.

recent developments in the kronos programming language 99



Figure 2. A Filter with ambigious clock sources

However, state and memory are important for many
DSP algorithms such as filters and delays. Like Faust[7],
Kronos deals with them by promoting them to language
primitives. Unit delays and ring buffers can be used to
connect to a time-delayed version of the signal graph. This
yields an elegant syntax for delay operations while main-
taining strict functional style within each update frame.

For strictly functional nodes, activation is merely an
optimization. For stateful operations such as delays, it
becomes a question of algorithmic correctness. Therefore
it is important that stateful nodes are not activated by any
springs other than the ones that define their desired clock
rate. For example, the unit delays in a filter should not be
activated by the user interface elements that control their
coefficients to avoid having the signal clock disrupted by
additional update frames from the user interface.

A resonator filter with a signal input and two control
parameters freq and radius is shown in Figure 2. The
nodes that see several clock sources in their upstream are
indicated with a dashed border. Since these include the
two unit delay primitives, it is unclear which clock should
determine the length of the unit delay.

3.3.1. Clock Priority

The clocking ambiguities can be resolved by assigning
priorities to the springs that drive the signal graph. This
means that whenever a node is activated by multiple springs,
some springs can preclude others.

The priority can be implemented by a strict-weak or-
dering criteria, where individual spring pairs can either
have an ordered or an unordered relation. Ordered pairs
will only keep the dominant spring, while unordered springs
can coexist and both activate a node. The priority sys-
tem is shown in Figure 3. The audio clock dominates the
control signal clocks. Wires that carry control signals are
shown hollow, while audio signal wires are shown solid
black. This allows the audio clock to control the unit de-
lays over sources of lesser priority.

Figure 3. A Filter with clocking ambiguity resolved

Figure 4. Dynamic clock from a Transient Detector

3.3.2. Dynamic Clocking and Event Streams

The default reactivity scheme with appropriate spring pri-
orities will result in sensible clocking behavior in most
situations. However, sometimes it may be necessary to
override the default clock propagation rules.

As an example, consider an audio analyzer such as a
simple transient detector. This processor has an audio in-
put and an event stream output. The output is activated by
the input, but only sometimes; depending on whether the
algorithm decides a transient occurred during that partic-
ular activation.

This can be implemented by a clock gate primitive,
which allows a conditional inhibition of activation. With
such dynamic activation, the reactive system can be used
to model event streams – signals that do not have a reg-
ular update interval. This accomplishes many tasks that
are handled with branching in prodecural languages, and
in the end results in similar machine code. A simple ex-
ample is shown in Figure 4. The Reactive : Gate primitive
takes a truth value and a signal, inhibiting any clock up-
dates from the signal when the truth value is false. This
allows an analysis algorithm to produce an event stream
from features detected from an audio stream.

100 recent developments in the kronos programming language



Table 1. Activation State Matrix

Clock
X

Clock×3
X X X

Clock×4
X X X X

3.3.3. Upsampling and Decimation

For triggering several activations from a single external
activation, an upsampling mechanism is needed. A spe-
cial purpose reactive node can be inserted in the signal
graph to multiply the incoming clock rate by a rational
fraction. This allows for both up- and downsampling of
the incoming signal by a constant factor. For reactive pri-
ority resolution, clock multipliers sourced from the same
external clock are considered unordered.

To synchronously schedule a number of different ra-
tional multiplies of an external clock, it is necessary to
construct a super-clock that ticks whenever any of the mul-
tiplier clocks might tick. This means that the super-clock
multiplier must be divisible by all multiplier numerators,
yet be as small as possible. This can be accomplished
by combining the numerators one by one into a reduction
variable S with the formula in Equation (1)

f (a,b) =
ab

gcd(a,b)
(1)

To construct an activation sequence from an upsam-
pled external clock, let us consider the sequence of S super-
clock ticks it triggers. Consider the super-clock multiplier
of S and a multiplier clock N

M . In terms of the super-clock
period, the multiplier ticks at N

SM . This is guaranteed to
simplify to 1

P , where P is an integer – the period of the
multiplier clock in super-clock ticks.

Within a period of S super-clock ticks, the multiplier
clock could potentially activate once every gcd(S,P) ticks.
In the case of P = gcd(S,P) the activation pattern is de-
terministic. Otherwise, the activation pattern is different
for every tick of the external clock, and counters must be
utilized to determine which ticks are genuine activations
to maintain the period P. An activation pattern is demon-
strated in Table 1.

This system guarantees exact and synchronous timing
for all rational fraction multipliers of a signal clock. For
performance reasons, some clock jitter can be permitted
to reduce the number of required activation states. This
can be done by merging a number of adjacent super-clock
ticks. As long as the merge width is less than the smallest
P in the clock system, the clocks maintain a correct aver-
age tick frequency with small momentary fluctuations. An
example of an activation state matrix is shown in Figure
1. This table shows a clock and its multiplies by three and
four, and the resulting activation combinations per super-
clock tick.

Table 2. Compilation passes performed by Kronos Beta
Pass Description
1. Specialization Generic functions to typed functions

and overload resolution
2. Reactivity Reactive analysis and splitting of typed

functions to different activation states
3. Side Effects Functional data flows to

pointer side effects
4. Codegen Selection and scheduling of

x86 machine instructions

3.3.4. Multiplexing and Demultiplexing

The synchronous multirate clock system can be leveraged
to provide oversampled or subsampled signal paths, but
also several less intuitive applications.

To implement a multiplexing or a buffering stage, a
ring buffer can be combined with a signal rate divider. If
the ring buffer contents are output at a signal rate divided
by the length of the buffer, a buffering with no overlap is
created. Dividing the signal clock by half of the buffer
length yields a 50% overlap, and so on.

The opposite can be achieved by multiplying the clock
of a vectored signal and indexing the vector with a ramp
that has a period of a non-multiplied tick. This can be
used for de-buffering a signal or canonical insert-zero up-
sampling.

3.4. Current Implementation in Kronos

The reactive system is currently implemented in Kronos
Beta as an extra pass between type specialization and ma-
chine code generation. An overview of the compilation
process is described in Table 2.

The reactive analysis happens relatively early in the
compiler pipeline, which results in some added complex-
ity. For example, when a function is factored into several
activation states, the factorizer must change some of the
types inferred by the specialization pass to maintain graph
consistency when splitting user functions to different ac-
tivation states.

Further, the complexity of all the passes depends heav-
ily on the data. During the specialization pass, a typed
function is generated for each different argument type.
For reacursive call sequences, this means each iteration
of the recursion. While the code generator is able to fold
these back into loops, compilation time grows quickly as
vector sizes increase. This hardly matters for the original
purpose of the compiler, as most of the vector sizes were
in orders of tens or hundreds, representing parallel ugen
banks.

However, the multirate processing and multiplexing
detailed in Section 3.3.4 are well suited for block pro-
cesses, such as FFT, which naturally need vector sizes
from several thousand to orders of magnitude upwards.
Such processes can currently cause compilation times from
tens of seconds to minutes, which is not desirable for a

recent developments in the kronos programming language 101



quick development cycle and immediate feedback. The
newest developments on Kronos focus on, amongst other
things, decoupling compilation time from data complex-
ity. The relationship of these optimizations to reactive fac-
torization is explored in the following Section 4.

4. NEW DEVELOPMENTS

Before Kronos reaches production maturity, a final rewrite
is underway to simplify the overrall design, improve the
features and optimize performance. This section discusses
the improvements over the beta implementation.

4.1. Sequence Recognition

Instead of specializing a recursive function separately for
every iteration, it is desirable to detect such sequences as
early as possible. The new version of the Kronos compiler
has a dedicated analysis algorithm for such sequences.

In the case of a recursion, the evolution of the induc-
tion variables is analyzed. Because Kronos is type deter-
ministic, as explained in Section 2.2.1, the overload reso-
lution is uniquely determined by the types of the induction
variables.

In the simple case, an induction variable retains the
same type between recursions. In such a case, the over-
load resolution is invariant with regard to the variable.
In addition, the analyzer can handle homogenous vectors
that grow or shrink and compile time constants with sim-
ple arithmetic evolutions. Detected evolution rules are
lifted or separated from the user program. The analyzer
then attempts to convert these into recurrence relations,
which can be solved in closed form. Successful analysis
means that a sequence will have identical overload resolu-
tions for N iterations, enabling the internal representation
of the program to encode this efficiently.

Recognized sequences are thus compiled in constant
time, independent from the size of data vectors involved.
This is in contrast to Kronos Beta, which compiled vec-
tors in linear time. In practice, the analyzer works for
functions that iterate over vectors of homogenous values
as well as simple induction variables. It is enough to effi-
ciently detect and encode common functional idioms such
as map, reduce, un f old and zip, provided their argument
lists are homogenous.

4.2. New LLVM Backend

As a part of Kronos redesign, a decision was made to
push the reactive factorization further back in the com-
pilation pipeline. Instead of operating in typed Kronos
functions, it would operate on a low level code represen-
tation, merely removing code that was irrelevant for the
activation state at hand.

This requires some optimization passes after factor-
ization, as well as an intermediate representation between
Kronos syntax trees and machine code. Both of these are
readily provided by the widely used LLVM, a compiler

Table 3. Compilation passes performed by Kronos Final

Pass Description
1. Specialization Generic functions to typed functions

and overload resolution
Sequence recognition and encoding

2. Reactive analysis Reactive analysis
3. Copy Elision Dataflow analysis and copy elision
4. Side Effects Functional data flows to

pointer side effects
5. LLVM Codegen Generating LLVM IR with a

specific activation state
6. LLVM Optimization Optimizing LLVM IR
7. Native Codegen Selection and scheduling of

x86 machine instructions

component capable of abstracting various low level in-
struction sets. LLVM includes both a well designed in-
termediate representation as well as industry strength op-
timization passes. As an extra benefit, it can target a num-
ber of machine architectures without additional develop-
ment effort.

In short, the refactored compiler includes more com-
pilation passes than the beta version, but each pass is sim-
pler. In addition, the LLVM project provides several of
them. The passes are detailed in Table 3, contrasted to
Table 2.

4.3. Reactive Factoring of Sequences

The newly developed sequence recognition creates some
new challenges for reactive factorization. The basic func-
tions of the two passes are opposed; the sequence analysis
combines several user functions into a compact represen-
tation for compile time performance reasons. The reactive
factorization, in contrast, splits user functions in order to
improve run time performance.

A typical optimization opportunity that requires co-
operation between reactive analysis and sequence recog-
nition would be a bank of filters controlled by a number
of different control sources. Ideally, we want to maintain
an efficient sequence representation of the audio section
of those filters, while only recomputing coefficients when
there is input from one of the control sources.

If a global control clock is defined that is shared be-
tween the control sources, no special actions are needed.
Since all iterations of the sequence see identical clocks at
the input side, they will be identically factored. Thus, the
sequence iteration can be analyzed once, and the analysis
is valid for all the iterations. The LLVM Codegen sees
a loop, and depending on the activation state it will filter
out different parts of the loop and provide the plumbing
between clock regions.

Forcing all control signals to tick at a global control
rate could make the patches easier to compile efficiently.
However, this breaks the unified signal model. A central
motivation of the reactive model is to treat event-based

102 recent developments in the kronos programming language



and streaming signals in the same way. If a global control
clock is mandated, signal models such as MIDI streams
could no longer maintain the natural relationship between
an incoming event and a clock tick. Therefore, event streams
such as the user interface and external control interfaces
should be considered when designing the sequence fac-
torizer.

4.3.1. Heterogenous Clock Rates in Sequences

Consider a case where each control signal is associated
with a different clock source. We would still like to main-
tain the audio section as a sequence, but this is no longer
possible for the control section, as each iteration responds
to a different activation state.

In this case, the reactive factorization must compute a
distinct activation state for each iteration of the sequence.
If there is a section of the iteration with an invariant acti-
vation state, this section can be factored into a sequence
of its own.

Such sequence factorization can be achieved via hyl-
opmorphism, which is the generalization of recursive se-
quences. The theory is beyond the scope of this arti-
cle, but based on the methods in literature[2], any se-
quence can be split into a series of two or more sequences.
In audio context, this can be leveraged so that as much
activation-invariant code as possible can be separated into
a sequence that can be maintained throughout the compi-
lation pipeline. The activation-variant sections must then
be wholly unrolled. This allows the codegen to produce
highly efficient machine code.

5. CONCLUSIONS

This paper presented an overview of Kronos, a musical
signal processing language, as well as the design of its
reactive signal model. Kronos is designed to increase the
flexibility and generality of signal processing primitives,
limiting the vocabulary that is requisite for programming.
This is accomplished chiefly via the type system and the
polymorphic programming method as well as the unified
signal model.

The reactive factorization algorithm presented in this
paper can remove the distinction between events, mes-
sages, control signals and audio signals. Each signal type
can be handled with the same set of primitives, yet the
code generator is able to leverage automatically deduced
signal metadata to optimize the resulting program.

The concepts described in this paper are implemented
in a prototype version of the Kronos compiler which is
freely available along with a visual, patching interface[4].
For a final version, the compiler is currently being re-
designed, scheduled to be released by the summer of 2013.
The compiler will be available with either a GPL3 or a
commercial license.

Some new developments of a redesigned compiler were
detailed, including strategies for handling massive vec-
tors. This is required for a radical improvement in com-
pilation times for applications that involve block process-

ing, FFTs and massive ugen banks. As Kronos aims to
be an environment where compilation should respond as
quickly as a play button, this is critical for the feasibility
of these applications.

As the compiler technology is reaching maturity, fur-
ther research will be focused on building extensive, adapt-
able and learnable libraries of signal processing primitives
for the system. Interaction with various software plat-
forms is planned. This takes the form of OSC commu-
nication as well as code generation – Kronos can be used
to build binary format extensions, which can be used as
plugins or extensions to other systems. LLVM integra-
tion opens up the possibility of code generation for DSP
and embedded devices. Finally, the visual programming
interface will be pursued further.

6. REFERENCES

[1] J. McCartney, “Rethinking the Computer Music Lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, 2002.

[2] S.-C. Mu and R. Bird, “Theory and applications of
inverting functions as folds,” Science of Computer
Programming, vol. 51, no. 12, pp. 87–116, 2004.
[Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167642304000140

[3] V. Norilo, “Introducing Kronos - A Novel Approach
to Signal Processing Languages,” in Proceedings of
the Linux Audio Conference, F. Neumann and V. Laz-
zarini, Eds. Maynooth, Ireland: NUIM, 2011, pp.
9–16.

[4] ——, “Visualization of Signals and Algorithms in
Kronos,” in Proceedings of the International Confer-
ence on Digital Audio Effects, York, United Kingdom,
2012.

[5] V. Norilo and M. Laurson, “Unified Model for Au-
dio and Control Signals,” in Proceedings of ICMC,
Belfast, Northern Ireland, 2008.

[6] ——, “A Method of Generic Programming for High
Performance DSP,” in DAFx-10 Proceedings, Graz,
Austria, 2010, pp. 65–68.

[7] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and
semantical aspects of Faust,” Soft Computing, vol. 8,
no. 9, pp. 623–632, 2004.

[8] Z. Wan and P. Hudak, “Functional reactive program-
ming from first principles,” in Proceedings of the
ACM SIGPLAN 2000, ser. PLDI ’00. ACM, 2000,
pp. 242–252.

[9] M. Wright, A. Freed, and A. Momeni, “OpenSound
Control: State of the Art 2003,” in Proceedings of
NIME, Montreal, 2003, pp. 153–159.

recent developments in the kronos programming language 103





Part III

Appendices

105





A L A N G U A G E R E F E R E N C E

This chapter is intended to enumerate and explain the primitive syntactic constructs in the Kronos
language, as well as to cover the functions supplied with the compiler in source form.

a.1 syntax reference
This section explains the structure and syntax of a program in the Kronos language.

a.1.1 Identifiers and Reserved Words

An identifier is a name for either a function or a symbol. Kronos identifiers may contain alphabetical
characters, numbers and certain punctuation. The first character of an identifier must not be a
digit. In most cases it should be an alphabetical character. Identifiers beginning with punctuation
are treated as infix functions.

Identifiers are delimited by whitespace, commas or parentheses of any kind. Please note that
punctuation does not delimit symbols; as such, a+b is a single symbol, rather than three.

Identifiers may be either defined in the source code or be reserved for specific purpose by the
language. Please refer to Table 3 for a summary of the reserved words.

a.1.2 Constants and Literals

Number types

Constants are numeric values in the program source. The standard decimal number is interpreted
as a 32-bit floating point number. Different number types can be specified with suffixes, as listed
in Table 4.

Invariants

In addition, numeric constants can be given as invariants. This is a special number that is lifted to
the type system. That is, every invariant number has a distinct type. Invariant numbers carry no
runtime data. Due to type determinisim, this is the only kind of number that can be used to direct
program flow. Invariants are prefixed with the hash tag, such as #2.71828 .

Invariant Strings

Kronos strings are also lifted to the type system. Each unique string thus has a distinct type. This
allows strings to be used to direct program flow. They do not contain runtime data. Strings are
written in double quotes, such as "This is a string"

107



108 language reference

Table 3: Reserved Words in the Kronos Parser

word reserved for
arg tuple of arguments to current function
Break remove type tag from data
cbuf ring buffer, returns buffer content
Let bind a symbol dynamically
Make attach type tag to data
Package Declaring a namespace
rbuf ring buffer, returns overwritten slot
rcbuf ring buffer, returns overwritten and buffer
rcsbuf ring buffer, returns overwritten, index and buffer
Type Declaring a type tag
Use Search for symbols in package
When explicit overload resolution rule
z-1 Unit delay

Table 4: Numeric constant types

example suffix description
3i i 3 as a 32-bit integer
3.1415d d 3.1415 as a 64-bit floating point number
9q q 9 as a 64-bit integer

Some special characters can be encoded by escape notation. The escape sequences are listed in
Table 5.

a.1.3 Symbols

A symbol is an identifier that refers to some other entity. Symbols are defined by equalities:
My-Number = 3

My-Function = x => x * 10

Table 5: String escape sequences

escape sequence meaning
\n new line
\t tabulator
\r carriage return
\v backspace
\\ single backslash



a.1 syntax reference 109

Subsequently, there is no difference between invoking the symbol or spelling out the expres-
sion assigned to it. Because symbols are immutable, there is no concept of the bound value ever
changing.

a.1.4 Functions

Functions can be bound to symbols via the lambda arrow:
Test = x => x + 5

Or the compound form:
Test(x) { Test = x + 5 }

The compound form allows multiple definitions of the function body, and these will be treated
as polymorphic. Unlike normal symbols, compound definitions of the same function from multiple
source code units are merged. This allows code units to extend a function that was defined in a
different unit.

The compound form can only appear inside packages, while the lambda arrow is an expression
and thus more flexible – it can be used to define nested functions. An example of both function
forms is given in Listing 6.

Listing 6: Compound function and Lambda arrow

My−Fold ( func data ) {
My−Fold = data

( x xs ) = data
My−Fold = func ( x My−Fold ( func xs ) )

}

Main ( ) {
Main = My−Fold ( ( a b ) => ( b a )

1 2 3 4 5 )

}
; O u t p u t s ( ( ( ( 5 4 ) 3 ) 2 ) 1 )

a.1.5 Packages

A Package is an unit of organization that conceptually contains parts of a Kronos program. These
parts can be functions or symbols. The packaging system provides a unique, globally defined way
to refer to these functions or symbols.

Symbols defined in the global scope of a Kronos program reside in the root namespace of the
code repository. They are visible to all scopes in all programs. The Listing 7 illustrates nested
packages and name resolution.

Listing 7: Packages and symbol lookup

Global−Symbol = 42

Package Outer {
Package Inner {

Bar ( ) {
Bar = Global−Symbol

}
}

Baz ( ) {



110 language reference

Baz = Inner : Bar ( )
}

}

Quux ( ) {
Quux = ( Outer : Baz ( ) Outer : Inner : Bar ( ) )

}

Scope

Scope is a context for symbol bindings within the program. By default, symbols are only visible to
the expressions within the scope. Only a single binding to any given symbol is permitted within
a scope. The compound form of a function is an exception: multiple compound forms are always
merged into one, polymorphic definition.

a.1.6 Expressions

Expressions represent computations that have a value. Expressions consist of Symbols (A.1.3),
Constants (A.1.2) and Function Calls. The simplest expression is the tuple; an ordered grouping of
Expressions.

Tuples

Tuples are used to bind multiple expressions to a single symbol. Tuples are denoted by parentheses,
enclosing any number of Expressions. The tuple is encoded as a chain of ordered pairs. This is
demonstrated in the Listing 8, in which the expressions a and b are equal in value.

Listing 8: Tuples and chains of pairs

a = (1 2 3 4 )
b = Pai r (1 Pair (2 Pair (3 4 ) )
; a a n d b a r e e q u i v a l e n t

Expressions within a tuple can also be tuples. Binding a symbol to multiple values via a tuple is
called Structuring.

destructuring a tuple
Destructuring is the opposite of structuring. Kronos allows a tuple of symbols on the left hand

side of a binding expression. Such tuples may only contain Symbols or similar nested tuples. This
is demonstrated in Listing 9.

Listing 9: Destructuring a tuple

my−tuple = (1 2 3 4 5 )
a1 = F i r s t (my−tuple )
a2 = F i r s t ( Rest (my−tuple ) )
a3 = F i r s t ( Rest ( Rest (my−tuple ) ) )
as = Rest ( Rest ( Rest (my−tuple ) ) )
( b1 b2 b3 bs ) = my−tuple
; b1 , b2 , b 3 a n d b s a r e e q u i v a l e n t t o a1 , a2 , a 3 a n d a s

Destructuring proceeds by splitting the right hand side of the definition recursively, according
to the structure of the left hand side. Each symbol on the left hand side is then bound to the
corresponding part of the right hand side.



a.1 syntax reference 111

Lists

Kronos lists are tuples that end in the nil type. This results in semantics that are similar to many
languages that use lists. The parser offers syntactic sugar for structuring lists. Please see Listing
10.

Listing 10: List notation

a = (1 2 3 4 n i l )
b = [1 2 3 4 ]
; a a n d b a r e e q u i v a l e n t

Usage of nil terminators and square brackets is especially advisable when structuring extends to
multiple levels. In Listing 11, symbols a and b are identical, despite different use of parenthesis.
Symbols c and d are not similarly ambiguous. As a rule of thumb, ambiguity is possible
whenever several tuples end at the same time. This never arises in list notation, as the lists always
end in nil .

Listing 11: Disambiguation of Nested Tuples

a = ( ( 1 2 ) (10 20 ) (100 200 ) )
b = ( ( 1 2 ) (10 20 ) 100 200 )
; a a n d b a r e e q u i v a l e n t ; t h i s i s c o n f u s i n g
c = [ ( 1 2 ) (10 20 ) (100 200 ) ]
d = [ ( 1 2 ) (10 20 ) 100 200 ]
; c a n d d a r e n o t e q u i v a l e n t

Function Call

A symbol followed by a tuple, with no intervening whitespace, is considered a function call. The
tuple becomes the argument of the function.

The symbols can be either local to the scope of the function call or globally defined in the code
repository. A local function call is shown in Listing 12.

Listing 12: Calling a local function

add−ten = x => x + 10

y = add−ten ( 5 )
; y i s 1 5

Infix Functions

Infix functions represent an alternative function call syntax. They are used to enable standard
notation for common binary functions like addition and multiplication. Kronos features only left
associative binary infix functions, along with a special ternary operator for pattern matching.

Symbols that start with a punctuation character are considered infix functions by default. Section
A.1.6 explains how to change this behavior.

The parser features a set of predefined infix functions that map to a set of binary functions. These
infices also have a well defined standard operator precedence. They are listed in Table 6 in order of
descending precedence. In addition, it is possible to use arbitrary infix functions: these always have
a precedence that is lower than any of the standard infices. Their internal precedence is based on
the first character of the operator. They are divided into four groups based on the initial character;
the rest of the characters are arbitrary. The initial characters of each group are listed in Table 6.



112 language reference

Table 6: Predefined infix functions

Infix Calls Description
/ :Div arithmetic division
* :Mul arithmetic multiplication
+ :Add arithmetic addition
- :Sub arithmetic substraction
== :Equal equality test
!= :Not-Equal non-equality test
> :Greater greater test
< :Less less test
>= :Greater-Equal greater or equal test
<= :Less-Equal less or equal test
& :And logical and
‖ :Or logical or
=> lambda arrow
<< bind right hand side to _ on left hand side
>> bind left hand side to _ on right hand side
∗/+− custom infices group 1

?! =<> custom infices group 2

‖&% custom infices group 3

. : ∼ ˆ custom infices group 4

Unary Quote

Prepending an expression with the quote mark ’ causes the expression to become an anonymous

function. The undefined symbol _ within the expression is bound to the function call argument

tuple. As an example, f(x) = 2x can be written as an anonymous function; ’Math:Pow(2 _)

Section

Parentheses can be used to enforce partial infix expressions, which are called sections. These
become partial applications of the infices. For example, (* 3) is an anonymous function that
multiplies its argument by three. If one side is omitted, the anonymous function is unary. If both
sides are omitted, the anonymous function is binary. This syntax is similar to Haskell.

Custom Infices

A symbol that begins with punctuation, but is not any of the predefined infices listed in Table 6, is
considered a custom infix operator. It has the lowest precedence. During parsing, such an operator
is converted into a function call by prepending “Infix” to the symbol. For example, a custom infix
a +- b is converted to Infix+-(a b) . Note that while the predefined infices refer to symbols

in the root namespace, custom infices follow the namespace lookup rules of their enclosing scope.
This allows constraining custom infix operators to situations where code is either located in or
refers to a particular package, reducing the risk of accidental use and collisions.



a.1 syntax reference 113

Table 7: Delay line operators in Kronos

Operator Arguments Returns
z-1 (init sig) prev-sig
rbuf (init order sig) delayed-sig
cbuf (init order sig) buffer
rcbuf (init order sig) (buffer delayed-sig)
rcsbuf (init order sig) (buffer index delayed-sig)

Infixing notation

A normal function can be used as an infix function by enclosing its name in backticks. Such in situ
infices always have the lowest precedence. For example, 3 + 4 , Add(3 4) and 3 ‘Add‘4 are
equivalent apart from precedence considerations.

Delays and Ring Buffers

Delays and ring buffers are operators that represent the state and memory of a signal processor.
Their syntax resembles that of a function, but they are not functions – they cannot be assigned to
symbols directly. The reason for this is that these operators enable cyclic definitions. That is, the
signal argument to a delay or ring buffer operator can refer to symbols that are only defined later.

There are multiple versions of delays for different common situations. They all share some
characteristics, such as having two signal paths, one for initialization and the other one for feedback.
The initializer path also decides the data type of the delay line.

An overview of the delay line operators is given in Table 7. The init argument is evaluated
and used to initialize the delay line contents for new signal processor instances. For the higher
order delays, the order argument is an invariant constant that determines the length of the delay

line. The initialization value is replicated to fill out the delay line. The sig argument determines
the reactivity – clock rate – of the delay operator. This clock rate is propagated to the output of the
operator.

Most delay operators output the delayed version of the input signal. The delay amount is fixed
at the order of the operator; one sample for the unit delay operator, and order for the higher
order operators. Variable delays and multiplexing can be accomplished by the delay line operators
that output the entire contents of the buffer , along with the index of the next write.

It is to be noted that all reads from a delay line always happen before the incoming signal
overwrites delay line contents.

Select and Select-Wrap

The selection operators provide variable index lookup into a homogenic tuple or list. If the source
tuple is not homogenic, in that it contains elements of different types, both selection operators
produce a type error. An exception is made for lists; a terminating nil type is allowed for a
homogenic list, but cannot be selected by the selection operators.

Select performs bounds clamping for the index; indices less or equal to zero address the first
element, while indices pointing past the end of the tuple will be constrained to the last element.
Select-Wrap performs modulo arithmetic; the tuple is indexed as an infinite cyclic sequence,



114 language reference

Table 8: Selection operators

Operator Arguments Returns
Select (vector index) element-at-index
Select-Wrap (vector index) element-at-index

Table 9: Reactive operators

Operator Args Retns Description
Tick (priority id) nil provides a reactive root clock with the

supplied ’id’ and ’priority’
Resample (sig clock) sig ’sig’ now updates at the rate of ’clock’

signal
Gate (sig gate) sig any updates to ’sig’ will be inhibited

while ’gate’ is zero
Merge tuple atom outputs the most recently changed ele-

ment in homogenic ’tuple’
Upsample (sig multiplier) sig output signal is updated ’multiplier’

times for every update of ’sig’
Downsample (sig divider) sig output signal is updated once for every

’divider’ updates of ’sig’
Rate sig rate returns the update rate of ’sig’ as a float-

ing point value

with the actual data specifying a single period of the cycle. A summary of the selection operators
is given in Table 8.

a.1.7 Reactive Primitives

Reactive primitives are operators that are transparent to data and values, and guide the signal
clock propagation instead. All the reactive operators behave like regular functions in the Kronos
language, but their functionality can’t be replicated by user code.

Most primitives take one or more signals, manipulating their clocks in some way. They can be
used to override the default clock resolution behavior, where higher priority signal clocks dominate
lower priority signal clocks. An overview of all the primitives is given in Table 9.

a.2 library reference

Algorithm

The Algorithm package provides functional programming staples: higher order functions that
recurse over collections, providing projections and reductions. This package covers most of the
functionality that imperative programs would use loops for.



a.2 library reference 115

accumulate Algorithm:Accumulate(func set...)

Produces a list where each element is produced by applying ’func’ to the previously produced
element and an element from ’set’.

concat Algorithm:Concat(as bs)

Prepends the list ’as’ to the list ’bs’

every Algorithm:Every(predicate set...)

return #true if all elements in ’set’ are true according to ’predicate’

expand Algorithm:Expand(count iterator seed)

Produces a list of ’count’ elements, starting with ’seed’ and generating the following elements
by applying ’iterator’ to the previous one.

filter Algorithm:Filter(predicate set)

Evaluates ’predicate’ for each element in ’set’, removing those elements for which nil is returned.

flat-first Algorithm:Flat-First(x)

Returns the first element in ’x’ regardless of its algebraic structure.

fold Algorithm:Fold(func set...)

Folds ’set’ by applying ’func’ to the first element of ’set’ and a recursive fold of the rest of ’set’.

iterate Algorithm:Iterate(n func x)

Applies a pipeline of ’n’ ’func’s to ’x’.

map Algorithm:Map(func set...)

Applies ’func’ to each element in ’set’, collecting the results.

multi-map Algorithm:Multi-Map(func sets...)

Applies a polyadic ’func’ to a tuple of corresponding elements in all of the ’sets’. The resulting
set length corresponds to the smalles input set.

reduce Algorithm:Reduce(func set...)

Applies a binary ’func’ to combine the first two elements of a list as long as the list is more than
one element long.

some Algorithm:Some(predicate set...)

return #true if some element in ’set’ is true according to ’predicate’



116 language reference

unzip Algorithm:Unzip(set...)

Produces a pair of lists, by extracting the ’First’ and ’Rest’ of each element in ’set...’.

zip Algorithm:Zip(as bs)

Produces a list of pairs, with respective elements from ’as’ and ’bs’.

zip-with Algorithm:Zip-With(func as bs)

Applies a binary ’func’ to elements pulled from ’as’ and ’bs’, collecting the results.

Complex

The Complex package provides a complex number type in source form, along with type-specific
arithmetic operations and overloads for global arithmetic.

abs Complex:Abs(c)

Computes the absolute value of complex ’c’.

abs-square Complex:Abs-Square(c)

Computes the square of the absolute value of complex ’c’.

add Complex:Add(a b)

Adds two complex numbers.

conjugate Complex:Conjugate(c)

Constructs a complex conjugate of ’c’.

cons Complex:Cons(real img)

Constructs a Complex number from ’real’ and ’img’inary parts.

cons-maybe Complex:Cons-Maybe(real img)

Constructs a Complex number from ’real’ and ’img’, provided that they are real numbers.

div Complex:Div(z1 z2)

Divides complex ’z1’ by complex ’z2’.

equal Complex:Equal(z1 z2)

Compares the complex numbers ’z1’ and ’z2’ for equality.

img Complex:Img(c)

Retrieve Real and/or Imaginary part of a Complex number ’c’.



a.2 library reference 117

maybe Complex:Maybe(real img)

mul Complex:Mul(a b)

Multiplies two complex numbers.

neg Complex:Neg(z)

Negates a complex number ’z’.

polar Complex:Polar(angle radius)

Constructs a complex number from a polar representation: ’angle’ in radians and ’radius’.

real Complex:Real(c)

Retrieve Real and/or Imaginary part of a Complex number ’c’.

sub Complex:Sub(a b)

Substracts complex ’b’ from ’a’.

unitary Complex:Unitary(angle)

Constructs a unitary complex number at ’angle’ in radians.

Dictionary

The Dictionary package provides a key-value store mechanism that stores a single value per key,
which can be retrieved or replaced. It is primarily intended for small stores as the implementation
performs a linear search.

find Dictionary:Find(dict key)

Finds an entry in key-value list ’dict’ whose key matches ’key’; or nil if nothing found.

insert Dictionary:Insert(dict key value)

Inserts a ’key’-’value’ pair into ’dict’; if ’key’ already exists in ’dict’, the value is replaced. The
modified collection is returned.

remove Dictionary:Remove(dict key)

Removes an entry in key-value list ’dict’ whose key matches ’key’; returns the modified collec-
tion.

Gen

The Gen package consists of building blocks for signal sources, such as oscillators, along with
some predefined audio and control rate oscillators.



118 language reference

phasor Gen:Phasor(clocking init inc)

Create a periodic ramp within [0,1], increasing by ’inc’ every time ’clock’ ticks.

sin Gen:Sin(clocking freq)

Sinusoid generator suitable for frequency modulation. Generates its own clock via the ’clocking’
function.

with-unit-delay Gen:With-Unit-Delay(func init)

Route the output of ’func’ back to its argument through a unit delay. Initialize the delay to ’init’.

dpw Wave:DPW(freq)

Implements a differentiated parabolic wave algorithm to provide a better quality sawtooth oscil-
lator for audio rates. Updates at the audio rate, oscillating at ’freq’ Hz.

saw Wave:Saw(freq)

A Simplistic sawtooth generator without band limiting. Updates at the audio rate, oscillating at
’freq’ Hz.

sin Wave:Sin(freq)

Audio rate sinusoid generator suitable for frequency modultaion.

IO

The IO module provides routines for querying and defining inputs and clock rates that are exter-
nal to the program, such as audio, MIDI or control inputs.

frequency-coefficient Frequency-Coefficient(sig freq)

Compute a frequency coefficient for the sample clock of ’sig’; the frequency is multiplied by the
sampling interval and becomes a signal source with the chosen sample rate.

interval-of Interval-of(sig)

Retrieve the sampling interval of ’sig’ in seconds.

rate-of Rate-of(sig)

Retrieve the sampling rate of ’sig’ in Herz.

in Audio:In()

Represents all the audio inputs to the system as a tuple.

signal Audio:Signal(sig)

Treats ’sig’ as an audio signal that updates at the audio rate.



a.2 library reference 119

param Control:Param(key init)

Represents an external control parameter keyed as ’key’, with the default value of ’init’.

signal Control:Signal(sig)

Treats ’sig’ as a control signal that updates at 1/64 of the audio rate.

signal-coarse Control:Signal-Coarse(sig)

Treats ’sig’ as a control signal that updates at 1/512 of the audio rate.

signal-fine Control:Signal-Fine(sig)

Treats ’sig’ as a control signal that updates at 1/8 of the audio rate.

LinearAlgebra

The LinearAlgebra package provides elementary operations on matrices.

cons Matrix:Cons(rows)

Constructs a matrix from a set of ’rows’.

element Matrix:Element(mtx col row)

Retrieves an element of matrix ’mtx’ at ’row’ and column ’col’, where ’row’ and ’col’ are zero-
based invariant constants.

hadamard-product Matrix:Hadamard-Product(a b)

Computes the Hadamard product of matrices ’a’ and ’b’.

map Matrix:Map(func mtx)

Applies function ’func’ to all elements of matrix ’mtx’, returning the resulting matrix.

mul Matrix:Mul(a b)

Multiplies matrices ’a’ and ’b’.

transpose Matrix:Transpose(matrix)

Transposes the ’matrix’.

Math

The Math package defines mathematical functions, such as the typical transcendental functions
used in many programs.



120 language reference

cos Math:Cos(a)

Take cosine of an angle in radians.

cosh Math:Cosh(x)

Computes the hyperbolic cosine of ’x’.

coth Math:Coth(x)

Computes the hyperbolic cotangent of ’x’.

csch Math:Csch(x)

Computes the hyperbolic cosecant of ’x’.

exp Math:Exp(a)

Compute exponential function of ’a’.

horner-scheme Math:Horner-Scheme(x coefficients)

Evaluates a polynomial described by the set of ’coefficients’ that correspond to powers of ’x’ in
ascending order. The evaluation is carried out according to the Horner scheme.

log Math:Log(a)

Compute the natural logarithm of ’a’.

log10 Math:Log10(a)

Compute the base 10 logarithm of ’a’.

pow Math:Pow(a b)

Compute the ’b’:th power of ’a’, where ’a’ and ’b’ are real numbers.

sech Math:Sech(x)

Computes the hyperbolic secant of ’x’.

sin Math:Sin(a)

Take sine of an angle in radians.

sinh Math:Sinh(x)

Computes the hyperbolic sine of ’x’.

sqrt Math:Sqrt(a)

Takes the square root of a floating point number.



a.2 library reference 121

tanh Math:Tanh(x)

Computes the hyperbolic tangent of ’x’.





B T U TO R I A L

This appendix is intended to explain the Kronos language from user perspective to a person with
some programming background. The tutorial consists of a set of thoroughly explained program
examples, which are intended to demonstrate the unique features of the system, as well as a section
on the usage of the command line drivers for the Kronos compiler. This tutorial doesn’t cover the
syntax: Please refer to Section A.1 for details. The compiler driver shown in all the examples is
krepl ; please see Section B.3 for a brief user guide.

b.1 introduction
Programming in Kronos is about functions. Some fundamental functions are provided as a baseline:
elementary math, structuring data and function application are built into the system. Everything
else builds on these; the provided runtime library composes the fundamental functions into tasks
that are more complex, such as evaluating a polynomial, handling richer data structures or produc-
ing an oscillating waveform.

Math:Cos is an example of a fundamental function that computes the cosine of an angle given
in radians. We can call the function from the REPL to see the return value.

> Math:Cos(0)

1

> Math:Cos(3.141592)

-1

In this example, Math: specifies that the function we are looking for is in the Math package.

Cos is the name of the function, followed by arguments immediately following the name, grouped

in parentheses. We can use Math:Cos as a building block in a slightly more complicated function
that computes the catheti of a right-angled triangle, given the hypotenuse and an angle in radians:

> Catheti(w r) {

> Catheti = (r * Math:Cos(w) r * Math:Sin(angle))

> }

Function

> Catheti(0.6435 5)

4 3

123



124 tutorial

Here we specified a function that uses cosine and sine, constructing a tuple of two numbers out
of them.

In addition to typical function calls that follow the form package–symbol–arguments, Kronos sup-
ports infix functions. These are the familiar mathematical operators, which are a convenient alter-
native to common function notation:

> 2 + 4 - 5 * 6

-24

> Sub(Add(2 4) Mul(5 6))

-24

To build a function that generates a sound from a non-audio source, such as an oscillator that
produces a waveform from a frequency parameter, Kronos utilizes signal memory or delay. Built-in
delay operators allow functions to compute on values of other symbols at some previous moment
in time. This can be used to build a phase integrator:

> Ig(rate) {

> st = z-1(0 st + Audio:Signal(rate))

> Ig = st

> }

The function Ig defines a local symbol, st . The definition looks odd: z-1 looks like a

function call, but there is a circularity: the value of st is used to compute its own definition!

This can work only because z-1 is a special operator rather than a real function. It takes two
parameters, an initializer and a signal. It returns a delayed version of signal, or if there is no past
signal yet, the initializer. Because of this, the value of st in terms of itself can be computed
incrementally, sample by sample, the way we typically process audio. The length of the delay is
determined by the incoming signal. In this case, we explicitly create an Audio:Signal , upsampling

the rate parameter.
A simple way to obtain an oscillation is to put the integrator through a periodic function such as

Math:Sin . This is a rather bad oscillator, because the ever-increasing phase accumulator interacts
badly with floating point arithmetic. As a result, tuning errors can be observed as the oscillator
keeps playing.

> snd = Math:Sin(Ig(0.02))

0

The basic concepts in Kronos include functions, signal memory and circular definitions. Signal
processors are composites of these building blocks. In Section B.2, more advanced compositions of
functions, signals, types and reactivity are explored.



b.2 examples 125

b.2 examples

b.2.1 Higher Order Functions

You can define functions using the lambda arrow syntax: arg => expr . The result of the arrow
operator is an anonymous function.

> MyFunction = x => x + 10

Function

> MyFunction(1)

11

> Algorithm:Map(MyFunction 1 2 3 4 5)

11 12 13 14 15

In this example, a simple function that adds 10 to its argument is constructed and passed as a
parameter to Algorithm:Map . Map is a higher order function; it makes use of other functions to

perform a type of task. In this instance, the other function is MyFunction , and the task is to apply

it to all elements in a set. The Algorithm package contains many higher order functions that
correspond to patterns commonly achieved with loops in imperative languages.

Let us define a higher order function of our own:

> MyFold(f tuple) {

> MyFold = tuple

> (x xs) = tuple

> MyFold = f(x MyFold(f xs))

> }

Function Function

> MyFold(Add 1 2 3 4 5)

15

> MyFold(String:Append "Hello" " " "World")

Hello World

There are a number of notable points in this small example. The function we have implemented is
Fold, a functional programming staple. Fold combines the elements in a set with a binary function:
we apply it in the example to do the sum 1+ 2+ 3+ 4+ 5 as well as concatenate strings.

The way Fold works is polymorphic. The return value is defined as either tuple or f(x MyFold(f xs)) .
Kronos will use the latter definition whenever possible, as it is defined later in the source file. Let’s
examine this form in detail.

The expression consist of two function calls, to f and MyFold . The former is a function
parameter, while the latter is the function itself – a recursive call. The use of a function parameter
that is itself a function is what makes MyFold a higher order function.

The remaining symbols in the expression are x and xs , defined via a destructuring bind

(x xs) = tuple . x is bound to the head of the tuple, while xs is bound to everything else in



126 tutorial

the tuple – the tail. The operating principle of our function is then to call itself recursively, with an
identical function parameter ( f ) and the tail of the tuple .

Previously, we glossed over the polymorphic form selection, stating just that Kronos would use this
form of MyFold whenever possible. The destructuring bind is key to what is “possible”: when

the tuple can not be destructured – has no head and tail – this form of MyFold fails to satisfy the

type constraints. Kronos will then fall back to the next available form, in this case MyFold = tuple ,
returning the tuple as is.

The following illustrates the recursive call and the return value of each MyFold call.

MyFold(Add 1 2 3 4 5)

MyFold(Add 2 3 4 5)

MyFold(Add 3 4 5)

MyFold(Add 4 5)

MyFold(Add 5) ; can’t destructure!

5

Add(4 5)

Add(3 9)

Add(2 12)

Add(1 14)

15

Higher Order Functions and Signal Routing

In the context of signal processing, higher order functions can be considered to construct com-
mon signal path topologies. Algorithm:Map , the first higher order function demonstrated in this
tutorial, corresponds to a parallel topology, such as a parallel filter bank.

MyFold is different from Algorithm:Map in one essential way. While the parameter functions

passed to Map all operate on elements of the input set, Fold threads the signal path through the
parameter function so that the output of each function call is fed to the input of the next one. This
can be used to perform serial routing.

Let’s use MyFold together with an oscillator to create a summing network:

> Import Gen

Ok

> add-sin = (freq sig) => sig + Wave:Sin(freq) * 0.1

Function

> snd = MyFold(add-sin 440 550 660 0)

0.0207643

> snd = ()

nil



b.2 examples 127

This example should play a major triad with sinusoids. This time, the folding function we
provide is more complicated than in the trivial examples above: we expect a frequency as the first
argument and a signal bus as the second argument. The function adds a Wave:Sin oscillator to

the signal bus, scaled by a gain coefficient, and returns the bus. Because of the way MyFold was
designed, we can pass a list of frequencies followed by an initial signal bus to create an oscillator
bank.

Often, it can be easier to split such tasks between several higher order functions. In the following
example, we create a parallel oscillator bank usign Map and a summing network with MyFold .
In this configuration, we can pass in library functions directly, and do not need to specify a com-
plicated anonymous function as in the example above.

> oscs = Algorithm:Map(Wave:Sin 440 550 660)

0.0540629 0.0692283 0.0843518

> snd = MyFold(Add oscs) * 0.1

0.207643

> snd = ()

Folds can be used for a variety of serial routings. In the final example, we are going to use
Algorithm:Expand and Algorihm:Reduce from the runtime library. Reduce greatly resembles

our MyFold – it is just designed to thread the signal from left to right, which can often be more

computationally efficient, and easier to read. Expand generates a list of elements from a seed
element and an iterator function applied a number of times. As a simple example, we generate a
list of 10 elements, starting from seed 1, and iterating with the function (* 2) to generate a series
of powers of two.

> Algorithm:Expand(#10 (* 2) 1)

1 2 4 8 16 32 64 128 256 512 nil

> f0 = 220

220

> ops = #3

#3

> freqs = Algorithm:Expand(ops (+ 110) f0)

220 330 440 nil

> rfreqs = Algorithm:Reduce((a b) => (b a) freqs)

440 330 220

> fm-op = (sig freq) => Wave:Sin(freq + sig * freq)

Function

> snd = Algorithm:Reduce(fm-op 0 rfreqs)

0.024885



128 tutorial

This creates a simple FM-synthesizer with three cascaded operators. We generate a series of har-
monic frequencies with Expand , reverse their order by using Reduce , and use another Reduce

to construct modulator-carrier pairs.
The REPL tracks symbol dependencies. This means that if you make changes that reflect on the

definition of snd , a new signal processor is constructed for you:

> f0 = 220 + Wave:Sin(5.5) * 10

219.938

> ops = #4

#4

> rfreqs = (0.1 330 440 550 165)

0.1 330 440 550 165

For additional examples, please see the literature [4] for a set of synthetic reverberators utilizing
higher order functions.

b.2.2 Signals and Reactivity

The Kronos signal model is based on reactivity. Each Kronos function is a pure function of current
and past inputs. Past input is accessed via delay operators such as z-1 (unit delay) and rbuf (ring
buffer).

The timing of input versus output depends on external stimuli, or inputs to the signal processor.
These include input streams like audio, possibly at many different update rates at once, and event-
based signals like MIDI, OSC or user interface widgets. The Kronos Core is largely oblivious of
the details of these input schemes, only providing facilities to declare typed inputs and associated
drivers that can act as clock sources for one or more inputs. This scheme enables asynchronous
and synchronous push semantics.

The reactive propagation described in [3] makes building of input–output signal processors very
easy. Such processors, for example digital filters, can be driven by the input signal, which pro-
vides the clock for the processor. Most filter implementations can ignore signal clock completely,
although some may require the sample rate to compute coefficients. Shown here is a resonator that
is inherently capable of adapting to any sample rate:

Resonator(sig amp freq bw) {

sample-rate = Reactive:Rate(sig)

w = #2 * Math:Pi * freq / sample-rate

r = Math:Exp(Neg(Math:Pi * bw / sample-rate))

norm = (#1 - r * r) * amp

a1 = #-2 * r * Math:Cos(w)

a2 = r * r

zero = x0 - x0



b.2 examples 129

y1 = z-1(zero y0)

y2 = z-1(zero y1)

y0 = sig - y1 * a1 - y2 * a2

Resonator = norm * (y0 - y2)

}

This filter implementation queries the Reactive:Rate of the input signal sig , which provides

the sample rate for whichever clock is driving sig . Computations that depend on sample-rate

will be performed only when the sample rate changes, rather than at the audio rate.
Reactivity is a little more complicated when we want to design signal processors whose output

clock is not derived directly from the input. A typical case would be an oscillator: audio oscillators
should update at the audio rate, and low frequency oscillators may update at some lower rate. Most
of the time, the inputs to these oscillators, such as frequency, waveform or amplitude controls, do
not update at the desired output rate.

The Kronos runtime library defines functions that resample signals to commonly desired clocks.
One such function is Audio:Signal , which resamples any signal at the base sample rate for audio.

Many oscillators are defined in terms of unit-delay feedback, which is the way you can add state
to Kronos signal processors. As the length of the unit delay is determined based on incoming
signal clock, we must be careful to send signal to the unit-delay feedback loop at the correct update
rate. Below is a simplistic example of an oscillator:

Phasor(freq) {

driver = Audio:Signal(0) ; dummy driver

sample-rate = Reactive:Rate(driver)

state = z-1(freq - freq Audio:Signal(wrap))

next = state + freq * (#1 / sample-rate)

wrap = next - Floor(next)

Phasor = state

}

This oscillator makes use of a faux audio input by constructing one via Audio:Signal(0) . It is
used to obtain the sample rate of the audio clock. Each sample in the output stream is computed
by adding the frequency, converted to cycles per sample, to the previous sample and substracting the
integral part via Floor . This results in a periodic ramp that increases linearly from 0 to 1 once
per cycle.

We can listen to the phasor and even make it modulate itself or use it with a higher order
function. A word of warning: these sounds are a little harsh.

> snd = Phasor(440)

0



130 tutorial

> snd = Phasor(440 + 110 * Phasor(1))

0

> snd = Algorithm:Reduce(

(sig f) => Phasor(f + sig * f)

0 1 110 440)

0

> snd = nil

nil

The audio phasor function serves as a basis for a number of oscillators, as it generates a non-
bandlimited ramp signal that cycles between 0 and 1 at the frequency specified. A set of naive
geometric waveforms are easy to come by:

> Saw = freq => #2 * Phasor(freq) - #1

Function

> Tri = freq => #2 * Abs(Saw(freq)) - #1

Function

> Pulse = (freq width) => Ternary-Select(

Phasor(freq) < width 1 -1)

Function

> snd = Pulse(55 0.5 + 0.5 * Tri(1))

1

Many signal processing algorithms can be optimized by lowering the update rate of certain
sections. In the literature, this is known as control rate processing. It is applied to signals whose
bandwidth much lower than the audio band.

We can reformulate our oscillators in terms of a desired update rate and waveshaping function:

Phasor(clocking freq) {

driver = clocking(0) ; dummy driver

sample-rate = Reactive:Rate(driver)

state = z-1(freq - freq clocking(wrap))

next = state + freq * (#1 / sample-rate)

wrap = next - Floor(next)

Phasor = state

}

> Saw = x => #2 * x - #1

Function

> Tri = x => #2 * Abs(Saw(x)) - #1

Function

> Pulse = width => (x => Ternary-Select(x < width 1 -1))

Function

> Osc = (shape freq) => shape(Phasor(Audio:Signal freq))



b.2 examples 131

Function

> LFO = (shape freq) => #0.5 + #0.5 *
shape(Phasor(Control:Signal-Coarse freq))

Function

> snd = Osc(Saw 440)

Function

> snd = Osc(Saw 440 + 40 * LFO(Tri 5))

Function

> snd = Osc(Pulse(LFO(Saw 1)) 110)

Function

We use two clocking functions, Audio:Signal and Control:Coarse to differentiate the update
reates of the phasors. Coarse control rate is 512 times slower than audio rate – such an extremely
low control rate is used here to better illustrate multirate processing.

Sometimes, sonic artifacts related to multirate processing can arise. A common case is zipper
noise, which is easily heard in amplitude modulation:

> snd = Osc(Tri 440) * LFO(Tri 1)

Function

This noise is caused by sudden changes in the amplitude, because the control signal looks like
a staircase waveform from the audio point of view. A form of interpolation is required to smooth
over the edges. An example of a linear interpolator is given below:

Upsample-Linear(sig to-clock) {

x0 = sig

x1 = z-1(sig - sig x0)

slow-rate = Reactive:Rate(sig)

fast-rate = Reactive:Rate(to-clock(0))

inc = slow-rate / fast-rate

wrap = x => x - Floor(x)

state = z-1(0 to-clock(wrap(state + inc)))

Upsample-Linear = x0 + state * (x1 - x0)

}

> snd = Osc(Tri 440) * Upsample-Linear(LFO(Tri 1) Audio:Signal)

Function



132 tutorial

Finally, let’s examine an OSC event stream. The correct way to use such a signal depends on the
application: if instantaneous transitions are desired, the stream can usually be sent directly to the
synthesis function. Alternatively, the signal could be resampled with a steady clock, such as the
audio or control signal rates, and filtered or smoothed. Please note that smoothing an event stream
without first injecting a steady update rate is not advised.

The following is a small example of direct usage, as well as a smoothing filter applied to the
control parameter after it being upsampled to control rate Fine , which runs at 1/8th of the audio
signal rate.

> freq = IO:Param("/freq" 440)

440

> snd = Osc(Saw freq)

Function

> lag(sig speed) {

st = z-1(sig st + speed * (sig - st))

lag = st

}

Function

> freq = lag(Control:Fine(IO:Param("/freq" 440)) 0.1)

440

b.2.3 Type-driven Metaprogramming

The previous tutorial on higher order functions demonstrated a polymorphic function – a function
whose behavior depends on the type of the parameters passed to it. Various forms exist for such
functions, and an appropriate one is picked according to the type constraints imposed by each form.

MyFold used destructuring as a type constraint to govern form selection. The specific behavior
of the function depends on whether the data parameter contains a tuple, that is, a number of
elements. For just one element, the recursion terminates, while several elements cause continued
recursion.

In addition to structural type features, such as the number of elements bound to a symbol, Kronos
also supports nominal types. These are semantic metadata – names – that are attached to data.
Consider two structurally identical but semantically different datums: a complex number and a
stereophonic sample. Both can consist of two floating point numbers. However, a programmer
would expect a multiplication of complex numbers to adhere to the mathematical definition, while
a product of stereophonic samples would more logically be performed per channel.

Further, if a set of types adhere to common behavior, such as basic arithmetic, we can design
functions against that behavior, ignoring the implementation details of the types in question. This
can be used in signal processing to write processor templates that can handle various I/O configu-
rations, such as different channel counts and sample resolutions.

Generic Filtering

As an exercise, let us define a simple low pass filter that adapts dynamically to the I/O configura-
tion. The basic implementation of the filter is shown below:



b.2 examples 133

MyFilter(sig tone) {

zero = sig - sig

y1 = z-1(zero y0)

y0 = y1 + tone * (sig - y1)

MyFilter = y0

}

This filter requires that the types of sig and tone have well-defined operators for Add , Sub

and Mul . As such, we can use it for single- or double precision numbers.

> Import Gen

Ok

> noise = Noise:Pseudo-White(0.499d)

0

> mod = 0.5 + 0.5 * Wave:Sin(1)

0.496607

> snd = MyFilter(noise mod)

0

Now, let’s make it work for an arbitrary number of channels as well. A straightforward solution
would be to define the filtering in terms of Algorithm:Map , but with a type-based solution, we
can enable multichannel processing for all the generic filters in the Kronos system in one fell swoop.

Type Multichannel

Package Multichannel {

Cons(channels) {

Cons = Make(:Multichannel channels)

}

As-Tuple(mc) {

As-Tuple = Break(:Multichannel mc)

}

Binary-Op(op a b) {

Binary-Op = Multichannel:Cons(

Algorithm:Zip-With(op

Multichannel:As-Tuple(a)

Multichannel:As-Tuple(b)))

}

}



134 tutorial

Add(a b) {

Add = Multichannel:Binary-Op(Add a b)

}

Sub(a b) {

Sub = Multichannel:Binary-Op(Sub a b)

}

Mul(a b) {

Mul = Multichannel:Binary-Op(Mul a b)

}

This defines just enough of the Multichannel type for it to work in our filter. We can construct

multichannel samples out of tuples of real numbers with Multichannel:Cons . As-Tuple re-

trieves the original tuple. These functions have very simple definitions: Cons attaches a semantic

tag, defined by Type Multichannel to the data passed to it. As-Tuple removes the tag, but has
a type constraint: it is a valid function call if and only if the type tag of the parameter was actually
Multichannel .

We define a helper function, Binary-Op that acts like a functional zip on two multichannel
signals: it applies a binary function pairwise to each element in the multichannel samples. Because
Binary-Op uses As-Tuple on its arguments, it inherits the type constraints: the function is not

valid if either a or b is not a multichannel sample.

This is makes polymorphic extensions to Add , Sub and Mul simple. The compiler is able to

perform pattern matching on the arguments based on the fact that these functions call Binary-Op ,

which requires Multichannel types.
This is enough to make arithmetic work and also to stop someone from obliviously destructuring

a multichannel sample:

> Multichannel:Cons(1 2 3) + Multichannel:Cons(20 30 40)

:Multichannel{21 32 43}

> Rest(Multichannel:Cons(1 2 3))

* Program Error E-9995: immediate(0;0); Specialization failed *
| Rest of non-pair

| no form for Rest :Multichannel{Floatx3}

MyFilter can also automatically take advantage of Multichannel :

> stereo-noise = Multichannel:Cons(noise noise)

:Multichannel{0 0}



b.2 examples 135

> lfo = freq => 0.5 + 0.5 * Wave:Sin(freq)

Function

> mod = Multichannel:Cons(lfo(1) lfo(1.1))

:Multichannel{-0.00678665 -0.00677262}

> snd = MyFilter(stereo-noise mod)

:Multichannel{-0.00678665 -0.00677262}

With our current code, Multichannel cannot interact with monophonic signals. MyFilter

only works if both sig and tone are Multichannel signals. It would be useful if we could
scale or translate a multichannel signal with a scalar. While we could define additional forms for
Add , Mul and Div , the runtime library contains type conversion infrastructure we can make

use of. First, let’s provide an explicit type conversion from a scalar to Multichannel :

Package Type-Conversion {

Explicit(type data) {

channels = Multichannel:As-Tuple(type)

Explicit = When(Real?(data)

Multichannel:Cons(

Algorithm:Map(’data channels)))

}

}

As-Tuple serves a dual purpose here: firstly, we obtain the number of channels in the conver-
sion target format. Secondly, we add a type constraint – this explicit conversion applies only when
the target type can accomodate Multichannel:As-Tuple .

Rudimentary type checking is added via a When clause, which requires data to be a (scalar)
real number. This prevents a number of strange things like strings, dictionaries and nested multi-
channel structures ending up inside this Multichannel sample. The final sample is produced by
mapping the channels of the target type with a simple funtion returning the source datum.

This allows coercion of real numbers to a corresponding multichannel format; however, arith-
metic still fails:

> Coerce(Multichannel:Cons(0 0) 1)

:Multichannel{1 1}

> Coerce(Multichannel:Cons(0 0 0 0) 5i)

:Multichannel{5 5 5 5}

> 1 + Multichannel:Cons(1 1)

* Program Error E-9995: immediate(0;2); Specialization failed *
| no form for Add (Float :Multichannel{Float Float})



136 tutorial

This is because Kronos will not do type conversions implicitly unless instructed. More specifi-
cally, the runtime library is programmed to fall back on a specific mechanism for implicit coercion
when binary operators are called with mismatched operands. To make the implicit case work, we
need to provide the following function:

Multichannel?(mc) {

Multichannel? = nil

Multichannel? = Require(Multichannel:As-Tuple(mc) True)

}

Package Type-Conversion {

Implicit?(from to) {

Implicit? = When(Real?(from) & Multichannel?(to) True)

}

}

We implement a small reflection function, Multichannel? which returns a truth value based

on whether the argument is a multichannel sample. Type-Conversion:Implicit? is queried by
the Kronos runtime library to check if a particular conversion should be done implicitly. In this
case, we return True when real numbers are to be converted to Multichannel samples. Now,
we can mix and match reals and multichannel samples.

> Multichannel:Cons(1 2) * 3

:Multichannel{3 6}

> 5 + 7 * Multichannel:Cons(1 10)

:Multichannel{12 75}

By now, our filter and sample type are pretty flexible:

> pan = (sig p) => Multichannel:Cons(sig * (1 - p) sig * p)

Function

> snd = pan(noise lfo(1))

:Multichannel{-0.00200005 4.52995e-08}

> snd = MyFilter(pan(noise lfo(1)) lfo(0.5))

:Multichannel{-0.000794533 1.79956e-08}

We specified a small ad hoc function, pan , to generate a stereo signal from a monophonic signal.

We then pass that to MyFilter along with a scalar coefficient. The implicit type conversions result
in the filter automatically becoming a 2-channel processor with a single coefficient controlling
all the channels. Alternatively, we could pass a multichannel coefficient to control each channel
separately.



b.2 examples 137

Notably, we injected all this functionality into MyFilter without altering any of its code after
the initial, simple incarnation. This is the power of type-based metaprogramming. Further exten-
sions to Multichannel type could include format descriptions, such as LCR or 5.1, and automatic,
semantically correct signal conversions between such formats.

b.2.4 Domain Specific Language for Block Composition

In this section we develop a small DSL within Kronos, inspired by the Faust [23] block-diagram
algebra. First, let’s define the elementary composition functions. Parallel composition means evalu-
ating two functions side by side, splitting the argument between them.

> Parallel = (a b) => ( (c d) => (a(c) b(d)) )

Function

> Eval(Parallel(Add Sub) (10 1) (2 20))

11 -18

Next, Serial composition in the same vein:

> Serial = (a b) => ( x => b(a(x)) )

Function

> Eval(Serial((+ 10) (* 5)) 1)

55

Recursive composition completes our DSL. This composition routes its output back to its input
via the right hand side function.

Recursive(a b) {

recursively = {

(sig fn) = arg

st = z-1(sig upd)

upd = fn(st)

upd

}

Recursive = in => recursively(in fb => a(b(fb) in))

}

This composition allows us to define an oscillator:

> Phasor = Serial((/ Audio:Rate())



138 tutorial

Serial(Audio:Signal

Recursive(Add Serial(

Serial(’(_ _)

Parallel(’_ Floor)) Sub))))

:Closure{Function Function :Closure{Function ...

> snd = Phasor(220)

0

At this point it is very unclear why someone would like to compose signal processors in this way,
as it seems very cumbersome. The essence of this style is that it is point-free – there is never a need
to specify a variable. To truly take advantage of this style – as Faust [23] does – the syntax must
become less cumbersome. One way to enhance the programming experience is to define custom
infix functions.

Kronos treats all symbols that begin with a punctuation mark as infix symbols. If the infix isn’t
one of the recognized ones, the parser will substitute a call to the function Infix<symbol> . These
custom infices have operator precedence that is lower than the standard infices – see Table 6 for
details.

> Dup = ’(_ _)

Function

> Infix-> = Serial

Function

> Infix~ = Recursive

Function

> Infix-< = (a b) => (a -> Dup -> b)

Function

> Infix|| = Parallel

Function

> Phasor = (/ Audio:Rate()) -> Audio:Signal

-> (Add ~ (’_ -< (’_ || Floor) -> Sub))

:Closure{Function :Closure{Function :Closure{Function ...

> snd = Phasor(220)

0

> Tri = Phasor -> (- 0.5) -> Abs -> (* 2) -> (- 0.5)

:Closure{Function :Closure{Function :Closure{Function ...

> snd = Tri(220)

-0.480045

However, the point-free style is at its best when combined with a suitable set of general purpose
functions written in the regular style;

> Fraction = x => x - Floor(x)

Function



b.2 examples 139

> Phasor = (/ Audio:Rate()) -> Audio:Signal -> (Add ~ Fraction)

:Closure{Function :Closure{Function :Closure{Function ...

If we formulate Fraction as a separate function in the normal style, the formulation of the
phasor is arguably more elegant than what could have been achieved in either style alone. The
pipeline starts by normalizing the frequency in Hertz to cycles per sample: the signal is then
resampled to audio rate by Audio:Signal , and the actual oscillation is provided by a recursive

composition of Add and Fraction .
A similar composition can also generate a recursive sinusoid oscillator:

> SinOsc = (* (Math:Pi / Audio:Rate())) -> Complex:Unitary

-> Audio:Signal -> (Mul ~ ’_) -> Complex:Real

:Closure{Function :Closure{Function :Closure{Function ...

> snd = SinOsc(440)

0.998036

The DSL can accommodate many types of digital filters, for which we define some helper func-
tions:

> Convolution(sig coefs) {

(c cs) = coefs

z = sig - sig

Convolution = When(Atom?(coefs) sig * coefs)

Convolution = sig * c + Convolution(z-1(z sig) cs)

Convolution = When(Nil?(coefs) 0)

}

Function Function

> Conv = coefs => (’Convolution(_ coefs))

Function

Convolution is a FIR filter that can accommodate any order, constructed with functional recur-

sion. Conv is a wrapper for the point-free style: it can be used to create a convolution stage in our
DSL. Note that the wrapper is essentially a partial application: the anonymous function just leaves
a “blank” for the pipeline to connect to. Now we can define a biquad filter in the Faust fashion:

> Biquad = (a1 a2 b0 b1 b2) => ( ( Add ~ Conv(a1 a2) )

-> Conv(b0 b1 b2) )

Function

> Resonator(freq bw) {



140 tutorial

w = #2 * Math:Pi * freq / Audio:Rate()

r = Math:Exp(Neg(Math:Pi * bw / Audio:Rate()))

norm = (#1 - r * r)

Resonator = Biquad(#2 * r * Math:Cos(w)

Neg(r * r)

norm #0 Neg(norm))

}

Function

> Import Gen

Ok

> noise = ’Noise:Pseudo-White(0.499d)

Function

> snd = Eval( noise -> Resonator(440 10) nil )

3.4538e-6

As has been proven by the Faust [23] project, block-diagram algebra can enable very compact,
elegant formulations of signal processors. This tutorial has demonstrated the implementation of
domain specific language for block-diagram algebra in the Kronos language.

For a proper library structure, the custom infices could be placed in a Package , such as

Block-Diagram . That would cause the infices to be confined to the namespace, being enabled

per-scope by the directive Use Block-Diagram .

b.3 using the compiler suite

b.3.1 kc: The Static Compiler

kc is the static compiler of the compiler suite. It is intended to produce statically compiled
versions of Kronos programs, as either LLVM [27] assembly code, machine-dependent assembly
code, or binary object code that can be integrated in a C-language compatible project. The compiler
can optionally produce a C/C++ header files to facilitate the use of the generated signal processor.

kc expects command line arguments that are either Kronos source code files (.k) to be loaded,
and named parameters that are conveyed with command line switches. Each switch has short and
long forms. The switches are displayed in Table 10.

By default, kc produces a binary object in the native format of the host platform. This object
provides entry points with C-linkage that correspond to the active external inputs to the signal
processor. Alternatively, the -S switch generates machine dependant assembly code instead.

Using -S and -ll together produces assembly in the platform-independent LLVM intermediate
representation. Please note that this code is not necessarily portable, as the compiler optimizes
according to the target architecture settings. Disabling optimization with the -O0 switch can
produce platform-independent LLVM IR.

The target machine can be specified with the -mcpu and -mtriple switches. The latter is a
Linux-style architecture triple, while the former can specify a target CPU that is more specific than
that of given by the triple. The available CPU targets can be listed by using -mcpu help .



b.3 using the compiler suite 141

Table 10: Command line parameters for kc

Long Short Param Description
–input -i <path> input source file name; ’-’ for stdin
–output -o <path> output file name, ’-’ for stdout
–header -H <path> write a C/C++ header for the object

to <path>, ’-’ for stdout
–output-module -om <module> sets -o <module>.obj, -P <module>

and -H <module>.h
–main -m <expr> main; expression to compile
–arg -a <expr> Kronos expression that determines

the type of the external argument
to main.

–assembly -S emit symbolic assembly
–prefix -P <sym> prefix; prepend exported code

symbols with ’sym’
–emit-llvm -ll export symbolic assembly in

LLVM IR format
–emit-wavecore -WC export symbolic assembly in

WaveCore format
–mcpu -C <cpu> engine-specific string describing

the target cpu
–mtriple -T <triple> target triple to compile for
–disable-opt -O0 disable LLVM code optimization
–quiet -q quiet mode; suppress logging to stdout
–diagnostic -D dump specialization diagnostic

trace as XML
–help -h display this user guide

b.3.2 kpipe: The Soundfile Processor

kpipe is a soundfile processor that can feed an audio file with an arbitrary number of channels
through a Kronos signal processor. The supported formats depend on the host platform: on Win-
dows, kpipe supports the formats and containers provided by the Microsoft Media Foundation.

On Mac OS X, the format support depends on Core Audio. On Linux, kpipe depends on the
libsndfile component. A list of the available command line parameters is given in Table 11. The
unnamed parameters are interpreted as paths to Kronos source files (.k) to be loaded prior to
compilation.

Table 11: Command line parameters for kpipe

Long Short Param Description
–input -i <path> input soundfile
–output -o <path> output soundfile
–tail -t <samples> set output file length padding

relative to input
–bitdepth -b override bit depth for output file
–bitrate -br override bitrate for output file
–expr -e <expr> function to apply to the soundfile
–quiet -q quiet mode; suppress logging
–help -h display this user guide



142 tutorial

Table 12: Command line parameters for kseq

Long Short Param Description
–input -i <path> input source file name; ’-’ for stdin
–main -m <expr> main; expression to connect to audio output
–audio-device -ad <regex> audio device; ’default’ or a regular

expression pattern
–audio-file -af <path> audio file; patch an audio file to

audio input
–dump-hex -DH write audio output to stdout as a

stream of interleaved 16-bit hexadecimals
–quiet -q quiet mode; suppress printing to stdout
–length -len <samples> compute audio output for the first

<samples> frames
–profile -P measure CPU utilization for each

signal clock
–log-sequencer -ls log processor output for each

sequencer input
–help -h help; display this user guide

b.3.3 kseq: The JIT Sequencer

kseq is a command line sequencer that can compile Kronos programs in real time and apply
sequences of control data in the EDN format either in real time or from disk. In addition, the drive
can profile the computational performance of the signal processor, factored for audio and control
clocks. The unnamed parameters are interpreted as paths to Kronos source files (.k) to be loaded
prior to compilation. A control data sequence can be supplied by the -i switch, or provided via
the standard input.

A list of the available command line switches to kseq is shown in Table 12.

b.3.4 krepl: Interactive Command Line

krepl is an interactive read-eval-print-loop application that drives the Kronos compiler. It pro-
vides a command prompt for expressions, the results of which are immediately displayed. While
symbol redefinition is disallowed by the core language, it is specifically allowed in the context of
the REPL to facilitate iterative programming. The REPL engine detects modifications to a global-
level symbol snd and all the symbols it depends on. When such a modification is detected, the

REPL patches snd to the audio device.

The REPL generates some Kronos symbols to facilitate audio configuration in the Configuration

package. Available-Audio-Devices is a list of audio devices detected by krepl . Audio-Device

is a function that returns the name of the device currently used. It defaults to the first item in
Available-Audio-Devices and can be modified in the REPL. Sample-Rate evaluates to the

desired sample rate. When krepl interacts with the audio hardware, it uses these symbols to
configure it.

Unlike the other drivers, krepl interprets unnamed parameters as expressions to be fed to the

REPL. Source files can be imported by the -i switch or by using the Import statement within
the REPL.



b.3 using the compiler suite 143

Table 13: Command line parameters for krepl

Long Short Param Description
–audio-device -ad <regex> audio device; ’default’ or a

regular expression pattern
–osc-udp -ou <integer> UDP port number to listen to

for OSC messages
–interactive -I Prompt the user for additional

expressions to evaluate
–format -f <text|edn|xml> Format REPL responses as...
–import -i <module> Import source file <module>
–help -h help; display this user guide





C L I F E C Y C L E O F A K R O N O S P R O G R A M

This appendix demonstrates the implementation of the Kronos compiler pipeline by exhibiting
and explaining the internal representation of a user program at various intermediate stages. The
program in question is the supplementary example from the introductory essay of this report: first
seen in Section 3.1.1. Node graphs of the more interesting aspects of the program, namely Map ,

Reduce and Sinusoid-Oscillator , are shown in visual form.

c.1 source code

Listing 13: The Supplementary Example

; t h e A l g o r i t h m l i b r a r y c o n t a i n s h i g h e r o r d e r
; f u n c t i o n s l i k e E x p a n d , Map a n d R e d u c e

; t h e C o m p l e x l i b r a r y p r o v i d e s c o m p l e x a l g e b r a

; t h e IO l i b r a r y p r o v i d e s p a r a m e t e r i n p u t s

; t h e C l o s u r e l i b r a r y p r o v i d e s c a p t u r e s f o r
; l a m b d a s

; t h e M a t h l i b r a r y p r o v i d e s t h e P i c o n s t a n t

Import Algorithm
Import Complex
Import IO
Import Closure
Import Math
Import I m p l i c i t−Coerce

Generic−O s c i l l a t o r ( seed i t e r a t o r−func ) {
; o s c i l l a t o r o u t p u t i s i n i t i a l l y ’ s e e d ’ ,
; o t h e r w i s e t h e o u t p u t i s c o m p u t e d b y a p p l y i n g
; t h e i t e r a t o r f u n c t i o n t o t h e p r e v i o u s o u t p u t

; t h e a u d i o c l o c k r a t e i s i n j e c t e d i n t o t h e l o o p
; w i t h ’ A u d i o : S i g n a l ’

out = z−1(seed i t e r a t o r−func ( Audio : S igna l ( out ) ) )

; z−1 p r o d u c e s a n u n i t d e l a y o n i t s r i g h t h a n d s i d e
; a r g u m e n t : t h e l e f t h a n d s i d e i s u s e d f o r
; i n i t i a l i z a t i o n

; A u d i o : S i g n a l ( s i g ) r e s a m p l e s ’ s i g ’ t o a u d i o r a t e

Generic−O s c i l l a t o r = out
}

145



146 life cycle of a kronos program

Sinusoid−O s c i l l a t o r ( f r e q ) {
; c o m p u t e a c o m p l e x f e e d b a c k c o e f f i c i e n t
norm = Math : Pi / Rate−of ( Audio : Clock )
feedback−coef = Complex : Unitary ( f r e q ∗ norm )

; C o m p l e x : U n i t a r y ( w ) r e t u r n s a c o m p l e x n u m b e r
; w i t h a r g u m e n t o f ’ w ’ a n d m o d u l u s o f 1 .

; i n i t i a l l y , t h e c o m p l e x w a v e f o r m s t a r t s f r o m
; p h a s e 0
i n i t i a l = Complex : Unitary ( 0 )

; H a s k e l l −s t y l e s e c t i o n ; a n i n c o m p l e t e b i n a r y o p e r a t o r
; b e c o m e s a n a n o n y m o u s u n a r y f u n c t i o n , h e r e c l o s i n g o v e r
; t h e f e e d b a c k c o e f f i c i e n t
s t a t e−evolut ion = (∗ feedback−coef )

; t h e o u t p u t o f t h e o s c i l l a t o r i s t h e r e a l p a r t o f t h e
; c o m p l e x s i n u s o i d
Sinusoid−O s c i l l a t o r = Complex : Real (

Generic−O s c i l l a t o r ( i n i t i a l s t a t e−evolut ion ) )
}

Main ( ) {
; r e c e i v e u s e r i n t e r f a c e p a r a m e t e r s
f0 = Control : Param ( " f0 " 0 )
f d e l t a = Control : Param ( " f d e l t a " 0 )

; n u m b e r o f o s c i l l a t o r s ; m u s t b e a n i n v a r i a n t c o n s t a n t
num−s i n e s = #50

; g e n e r a t e t h e f r e q u e n c y s p r e a d
f r e q s = Algorithm : Expand (num−s i n e s (+ ( f d e l t a + f0 ) ) f0 )

; a p p l y o s c i l l a t o r a l g o r i t h m t o e a c h f r e q u e n c y
oscs = Algorithm :Map( Sinusoid−O s c i l l a t o r f r e q s )

; sum a l l t h e o s c i l l a t o r s a n d n o r m a l i z e
s i g = Algorithm : Reduce ( ( + ) oscs ) / num−s i n e s

Main = s i g
}

c.2 generic syntax graph

The generic syntax graph is a representation of the format Kronos source is held in memory after
parsing.

Figure 3 represents the parsed form of Generic-Oscillator . The return value is indicated for
clarity only, and does not reflect a node in the parsed syntax tree.

Figure 4 shows Sinusoid-Oscillator . The parser performs a significant transformation, im-
plementing lexical closures via partial application (Currying). Specifically, the function bound to
(* feedback-coef) in the source code has become Curry(Mul feedback-coef) . Similar trans-

formation is performed for all anonymous functions close over symbols defined in the parent
scope.



c.3 typed syntax graph 147

z-1

Audio:Signalreturn value

Eval

seed

iterator-func

Figure 3: Generic-Oscillator abstract syntax tree

c.3 typed syntax graph

The typed syntax graph is the result of the specialization pass, described in Section 2.2.4. The
typed form of Sinusoid-Oscillator is shown in Figure 5. Most notably, type information has
been collapsed and is fixed into the nodes of this typed signal graph. Function arguments are
represented by the Argument node, which delivers an algebraic composite of all the arguments

for destructuring via First and Rest .

The invariant constant for Math:Pi is absent from the data flow. The division operator has

become a call to the function Div-Fallback . This is because the division was between different

types: an invariant constant ( Math:Pi ) and a floating point constant (output of Reactive:Rate ).
Ordinary division was rejected by type constraints and the fallback form was used instead. It
peforms argument coercion to conforming types. Essentially, the library has generated a specialized
function for dividing Math:Pi by a floating point signal.

As the feedback coefficient is captured by state-evolution , the Currying–Closure mecha-

nism has substituted a Pair of the function and the curried argument. These are passed to

Generic-Oscillator together with the seed signal, a complex-valued zero. The specialization

of Generic-Oscillator is shown in Figure 6.

As discussed in P6 , Kronos performs whole-program type derivation. In a type-variant recur-

sive function such as Algorithm:Map , this can be expensive, as it scales linearly with recursion
depth. To specialize common recursive sequences in constant time, Kronos contains a recursion
solver that can identify invariant type constraints for type-variant recursive functions. For example,
Algorithm:Map specializes very similarly for all its iterations. The output of the sequence recog-

nizer is demonstrated in Figure 7. This shows an iteration of the sequence: the entire sequence is
stored as a recurring body, repeat count and a terminating case.



148 life cycle of a kronos program

Complex:Real

Generic-Oscillator

Complex:Unitary

0

Curry

Mul Complex:Unitary

Mul

freq Div

Audio-Clock

Rate-ofMath:Pi

Figure 4: Sinusoid-Oscillator abstract syntax tree

c.4 reactive analysis

The typed programs are subsequently analyzed for reactive data dependencies. To reduce compi-
lation time, call graph simplification is done before this analysis. This step inlines trivial functions
into their callers. Both steps are evident in the analyzed form of Sinusoid-Oscillator , shown

in Figure 8. The calls to Generic-Oscillator and state-evolution have been inlined and are

present as primitive operators: Add , Mul , Sub and RingBuffer .

Complex-numbered arithmetic has been lowered to work on pairs of floating point numbers.
Structuring and destructuring are performed via Pair , First (for the real part) and Rest (for
the imaginary part). The bulk of the audio rate processing in the example figure is the feedback
loop around RingBuffer[1] , where the complex-valued content of the buffer is destructured,
multiplied with the feedback coefficient, and structured back into the buffer.

The reactive analysis pass incorporates clock information into the typed graph. Clock region
boundaries gain a node, shown as the four Clock nodes in the example figure. Each boundary
node encodes information about which clocks are active up- and downstream of the boundary. For
brevity, the example figure only shows the clocks that become active when moving downstream
across the boundary. The clock regions themselves are color-coded in the figure. As a clarification,
the root node of the graph is indicated by a node labeled as output . This node is for visualization
purposes only and not present in the internal representation.



c.5 side effect transform 149

First

<Generic-Oscillator>

:Complex

<Complex:Unitary>

0 <Complex:Unitary>

Pair

Mul

Float

Argument <Div-Fallback #3.14159>

Float

BaseRate

Tick<Audio-Clock>

state-evolution

(:Closure{Function :Complex} :Complex)

Figure 5: Sinusoid-Oscillator specialized form

c.5 side effect transform
The Side Effect Transform (please see 2.2.4) facilitates further lowering of the program towards
machine code. The abstract structuring and destructuring operations are converted to low-level
pointer arithmetic. The recurring case in the call to Algorithm:Reduce((+) oscs) is shown in

Figure 9, both in simple, typed form and after the Side Effect Transform. The Recur node in the
figure corresponds with the point of recursion.

The left-hand side data flow is omitted by the Side Effect Transform, as it is a mere abstract
passthrough of the reduction function (+) and contains no live signal data. The rest of the signal
path obtains the two first elements of the argument list, adds them, and constructs a new list by
prepending the result to the tail of the list. Kronos encodes the list as a pair of a raw floating point
number, f32 in the LLVM [27] vernacular, and a raw pointer, i8* . The new head is formed by

Add , while the new tail is formed by a simple offset of the previous tail pointer by 4 bytes, which

is the size of f32 .

The third argument to Recur is the return value pointer. Side Effect Transform translates return
values into side effects – instead of receiving a value from a callee, the caller passes in a memory
location where the callee will place the results.



150 life cycle of a kronos program

RingBuffer[1]

<Audio:Signal>

:Complex

First

Argument

Rest

<Closure:Call>

:Complex

Pair

(:Closure{Function :Complex} :Complex)

:Complex

Figure 6: Generic-Oscillator specialized form

Kronos performs copy elision by propagating the return value pointer upstream from the function
root. Reduce is tail-recursive, so copy elision passes the return value pointer, out:i8* , as is. The

terminating case of Reduce will eventually write arg1:f32 to this location.
The copy elision is general enough to perform a technique known as tail recursion modulo cons.

Any Pair nodes at the root of the function will vanish from the side-effectful version, as they
become pointer arithmetic on the return value pointers passed via copy elision. Therefore, many
recursive functions that generate their output by structuring a recursive call into a list can be
compiled in tail-recursive side-effectful form, even if their source code looks like it is not tail
recursive.

Notably, the output of the Side Effect Transform is no longer functionally pure or referentially
transparent. This means that for program correctness, the execution schedule of the nodes must
be constrained. The transform accomplishes this by adding explicit dependencies into the graph.
The complexity of the side-effectful graphs can escalate quickly, as is evident from Figure 10. This
is the translated version of the recursive case of Algorithm:Map , containing the completely inline

form of Sinusoid-Oscillator .
In addition to return values, cycles in the graph around delay operators are split into feedforward

and feedback parts, the latter of which are attached to the root of the function as side effects on
a shared memory location. The memory for these operations is reserved from a state pointer,
arg1:i8* , which is threaded through all the stateful operations and functions in the graph.

Due to the semantics of the delay operators in the Kronos language, the contents of the ring
buffer must not be written before all the operations on the previous data are completed. This
ensures that the operators remain semantically pure, and that the mutation of state can not be seen



c.6 llvm intermediate 151

Pair

Recursive-Sequence

First

Argument

Rest

Rest

Rest

Pair

<Generic-Oscillator>

Float

First

Float

Figure 7: Algorithm:Map sequence specialization

by user programs. This is the source of the most complex data hazard in the Side Effect Transform
– writes must be scheduled after reads. This is accomplished by explicit Depends nodes, which
guard the write pointers passed to the side effects for the duration of any pure operation that
dereferences the same location.

Most of the complexity is Figure 10 is due to data hazard protection. To make the graph more
readable, edges that only convey dependencies and program order, and no data, are colored gray
and dashed.

c.6 llvm intermediate
The Kronos LLVM [27] emitter produces assembly language in the LLVM IR format that closely
matches the signal graph produced by the Side Effect Transform. The significant responsibility of
the IR emitter is to schedule the computations: minimize the duration of buffer lifetimes and the
number of live signals to aid the LLVM optimizer – as the most significant case, schedule potential
function calls so that they can be tail-call optimized.

Listing 14: Map(Sinusoid-Oscillator ...) as LLVM IR

; F u n c t i o n A t t r s : n o u n w i n d a r g m e m o n l y
def ine p r i v a t e f a s t c c i 8∗ @" Tickaudio_frame_0 : : Algorithm : Map_seq " ( i 8∗ n o a l i a s nocapture %self , i 8

∗ n o a l i a s nocapture %state , i 8∗ n o a l i a s nocapture %p1 , i 8∗ n o a l i a s nocapture %p2 , i 3 2 %p3)
unnamed_addr #0 {

Top :



152 life cycle of a kronos program

RingBuffer[1]

First Rest

Pair

Cos

0

Sin

Pair

Sub

Mul Muloutput

Clock:Audio

Mul

Cos

Mul

Sin

Clock:Audio-Rate

freq

Clock:UI

Div

3.14159 Global<Audio-Rate>

Mul

Clock:Audio

Add

Figure 8: Sinusoid-Oscillator after reactive analysis

; o f f s e t s t o t h e s t a t e b u f f e r f o r l o c a l s i d e e f f e c t s
%0 = gete lementptr i8 , i 8∗ %state , i 6 4 8

%1 = gete lementptr i8 , i 8∗ %0 , i 6 4 4

%2 = gete lementptr i8 , i 8∗ %1 , i 6 4 4

%3 = gete lementptr i8 , i 8∗ %2 , i 6 4 4

%4 = gete lementptr i8 , i 8∗ %3 , i 6 4 4

; ’ R e s t ’ o f i n p u t a n d o u t p u t a r r a y s
%5 = gete lementptr i8 , i 8∗ %p2 , i 6 4 4

%6 = gete lementptr i8 , i 8∗ %p1 , i 6 4 4

%7 = gete lementptr i8 , i 8∗ %state , i 6 4 4

%8 = gete lementptr i8 , i 8∗ %state , i 6 4 4

%9 = gete lementptr i8 , i 8∗ %state , i 6 4 4

; i n i t i a l i z e r s i g n a l f o r t h e R i n g B u f f e r
%10 = c a l l f l o a t @llvm . s in . f32 ( f l o a t 0 .000000 e +00)
%11 = c a l l f l o a t @llvm . cos . f32 ( f l o a t 0 .000000 e +00)

; d e s t r u c t u r e a n d l o a d t h e c o m p l e x n u m b e r p a r t s
; f r o m s t a t e m e m o r y − b o t h R i n g B u f f e r a n d c l o c k
; b o u n d a r y
%12 = b i t c a s t i 8∗ %8 to f l o a t∗
%13 = load f l o a t , f l o a t∗ %12 , a l i g n 4



c.6 llvm intermediate 153

First

Recur

First

Add

First

Rest

Rest

Rest

Pair

Argument

Recur(f32, i8*, i8*)

[+4]

arg2:i8*

Load<f32>

Add

arg1:f32

out1:i8*

Figure 9: Side-effect transform on the Reduce(Add ...) sequence

%14 = b i t c a s t i 8∗ %8 to f l o a t∗
%15 = load f l o a t , f l o a t∗ %14 , a l i g n 4

%16 = b i t c a s t i 8∗ %state to f l o a t∗
%17 = load f l o a t , f l o a t∗ %16 , a l i g n 4

%18 = b i t c a s t i 8∗ %state to f l o a t∗
%19 = load f l o a t , f l o a t∗ %18 , a l i g n 4

%20 = gete lementptr i8 , i 8∗ %state , i 6 4 8

%21 = gete lementptr i8 , i 8∗ %20 , i 6 4 4

%22 = b i t c a s t i 8∗ %21 to f l o a t∗
%23 = load f l o a t , f l o a t∗ %22 , a l i g n 4

%24 = gete lementptr i8 , i 8∗ %21 , i 6 4 4

%25 = b i t c a s t i 8∗ %24 to f l o a t∗
%26 = load f l o a t , f l o a t∗ %25 , a l i g n 4

%27 = gete lementptr i8 , i 8∗ %24 , i 6 4 4

%28 = b i t c a s t i 8∗ %27 to f l o a t∗
%29 = load f l o a t , f l o a t∗ %28 , a l i g n 4

%30 = b i t c a s t i 8∗ %20 to f l o a t∗
%31 = load f l o a t , f l o a t∗ %30 , a l i g n 4

; a c c e s s t h e g l o b a l v a r i a b l e f o r a u d i o s a m p l i n g r a t e
%32 = gete lementptr i8 , i 8∗ %self , i 6 4 mul ( i 6 4 p t r t o i n t ( i 1∗∗ gete lementptr ( i 1 ∗ , i 1∗∗ null ,

i 3 2 1 ) to i 6 4 ) , i 6 4 2 )
%33 = b i t c a s t i 8∗ %32 to i 8∗∗
%34 = load i 8 ∗ , i 8∗∗ %33 , a l i g n 4

%35 = b i t c a s t i 8∗ %34 to f l o a t∗
%36 = load f l o a t , f l o a t∗ %35 , a l i g n 4

; c o m p l e x −n u m b e r m u l t i p l i c a t i o n
%37 = fmul f l o a t %17 , %29

%38 = fmul f l o a t %15 , %29

%39 = fmul f l o a t %13 , %26

%40 = fmul f l o a t %19 , %26



154 life cycle of a kronos program

D
epends

R
ecur<

recur>

[+
4]

[+
4]

[+
4]

[+
4]

[+
8]

arg1:i8*

arg4:i32
[+
4]

out1:i8*

D
epends

[+
4]

arg2:i8*

B
oundary

M
em
C
py

S
tore

D
epends

[+
4]

arg1:i8*

[+
4]

[+
4]

S
tore

D
epends

[+
8]

M
em
C
py

D
epends

L
oad<

f32>

M
ul

D
epends

L
oad<

f32>

S
tore

S
in

0

C
os

L
oad<

f32>

M
ul

L
oad<

f32>

L
oad<

f32>

D
epends

[+
4]

S
tore

[+
4]

L
oad<

f32>
S
tore

[+
4]

L
oad<

f32>
S
tore

D
epends

S
inB
oundary

M
ul

C
os

L
oad<

f32>
B
oundary

D
iv

3.14159
L
oad<

f32>

L
oad<

P
ointer>

O
ffset

arg0:i8*
M
ul

2
S
izeO

fP
ointer

D
epends

M
ul

D
epends

B
oundary

M
ul

A
dd

S
tore

S
ub

Figure
10:Side-effect

transform
on

the
M
a
p
(
S
i
n
u
s
o
i
d
-
O
s
c
i
l
l
a
t
o
r

.
.
.
)

sequence



c.7 llvm optimized x64 machine code 155

%41 = fadd f l o a t %37 , %39

%42 = fsub f l o a t %40 , %38

; r e t u r n v a l u e : r e a l p a r t f r o m t h e r i n g b u f f e r m e m o r y
c a l l void @llvm . memcpy . p0 i8 . p0 i8 . i 6 4 ( i 8∗ %p2 , i 8∗ %state , i 6 4 4 , i 3 2 4 , i 1 f a l s e )

; s i d e e f f e c t s : w r i t e t h e m u l t i p l i c a t i o n r e s u l t t o
; r i n g b u f f e r m e m o r y − a f t e r a l l t h e o t h e r o p e r a t i o n s
%43 = b i t c a s t i 8∗ %7 to f l o a t∗
s t o r e f l o a t %41 , f l o a t∗ %43 , a l i g n 4

%44 = b i t c a s t i 8∗ %state to f l o a t∗
s t o r e f l o a t %42 , f l o a t∗ %44 , a l i g n 4

; d e c r e m e n t l o o p c o u n t e r a n d b r a n c h
%45 = sub i 3 2 %p3 , 1

%46 = icmp eq i 3 2 %45 , 0

br i 1 %46 , l a b e l %RecursionEnds , l a b e l %Recursion

RecursionEnds : ; p r e d s = %Top
%47 = t a i l c a l l f a s t c c i 8∗ @" Tickaudio_frame_0 : : t a i l " ( i 8∗ %self , i 8∗ %4 , i 8∗ %6 , i 8∗ %5)
br l a b e l %Merge

Recursion : ; p r e d s = %Top
%48 = t a i l c a l l f a s t c c i 8∗ @" Tickaudio_frame_0 : : Algorithm : Map_seq " ( i 8∗ %self , i 8∗ %4 , i 8∗ %6 ,

i 8∗ %5 , i 3 2 %45 )
br l a b e l %Merge

Merge : ; p r e d s = % R e c u r s i o n , % R e c u r s i o n E n d s
%49 = phi i 8∗ [ %48 , %Recursion ] , [ %47 , %RecursionEnds ]
r e t i 8∗ %49

}

c.7 llvm optimized x64 machine code
Finally, the LLVM [27] intermediate representation is passed to the LLVM backend for optimization
and machine code generation. LLVM can generate machine code for various hardware targets via
techniques such as pattern matching instruction selection and type legalization. Some optimization
passes are general and reduce the likely computational complexity of the IR, while others depend
on the features of the selected target architecture.

As an example, the 64-bit Intel architecture code generated for the vectored audio update routine
for the Listing 13 is shown in symbolic assembly, in Listing 15. The oscillator bank loop starts at the

label L̇BB5_3 , which contains several unrolled iterations of the recursive-complex multiplication.
One oscillator update consists of four memory reads, three memory writes (of 32-bit floating point
values each) and 7 other instructions. Additional four looping instructions are employed once for
every three oscillators.

In total, the lifecycle demonstrates the complicated program transformations that Kronos em-
ploys in order to keep the overhead of high level, abstract programming to a bare minimum.

Listing 15: Audio update routine for the supplementary example

Tickaudio :
sub rsp , 200

t e s t r8d , r8d
j e . LBB5_5

l e a r9 , [ rcx + 524 ]
movss xmm0, dword ptr [ r i p + __real@3ca3d70a ]
. a l i g n 16 , 0x90

. LBB5_2 :
movss xmm1, dword ptr [ rcx + 408 ]



156 life cycle of a kronos program

movss xmm2, dword ptr [ rcx + 412 ]
movss xmm3, dword ptr [ rcx + 424 ]
movss xmm4, dword ptr [ rcx + 428 ]
movaps xmm5, xmm1

mulss xmm5, xmm4

mulss xmm4, xmm2

mulss xmm2, xmm3

mulss xmm3, xmm1

addss xmm2, xmm5

subss xmm3, xmm4

movss dword ptr [ rsp ] , xmm1

movss dword ptr [ rcx + 4 1 2 ] , xmm2

movss dword ptr [ rcx + 4 0 8 ] , xmm3

movss xmm1, dword ptr [ rcx + 432 ]
movss xmm2, dword ptr [ rcx + 436 ]
movss xmm3, dword ptr [ rcx + 448 ]
movss xmm4, dword ptr [ rcx + 452 ]
movaps xmm5, xmm1

mulss xmm5, xmm4

mulss xmm4, xmm2

mulss xmm2, xmm3

mulss xmm3, xmm1

addss xmm2, xmm5

subss xmm3, xmm4

movss dword ptr [ rsp + 4 ] , xmm1

movss dword ptr [ rcx + 4 3 6 ] , xmm2

movss dword ptr [ rcx + 4 3 2 ] , xmm3

mov rax , r9

mov r10d , 4

. a l i g n 16 , 0x90

. LBB5_3 :
movss xmm1, dword ptr [ rax − 68 ]
movss xmm2, dword ptr [ rax − 64 ]
movss xmm3, dword ptr [ rax − 52 ]
movss xmm4, dword ptr [ rax − 48 ]
movaps xmm5, xmm1

mulss xmm5, xmm4

mulss xmm4, xmm2

mulss xmm2, xmm3

mulss xmm3, xmm1

addss xmm2, xmm5

subss xmm3, xmm4

movss dword ptr [ rsp + 4∗ r10 − 8 ] , xmm1

movss dword ptr [ rax − 6 4 ] , xmm2

movss dword ptr [ rax − 6 8 ] , xmm3

movss xmm1, dword ptr [ rax − 44 ]
movss xmm2, dword ptr [ rax − 40 ]
movss xmm3, dword ptr [ rax − 28 ]
movss xmm4, dword ptr [ rax − 24 ]
movaps xmm5, xmm1

mulss xmm5, xmm4

mulss xmm4, xmm2

mulss xmm2, xmm3

mulss xmm3, xmm1

addss xmm2, xmm5

subss xmm3, xmm4

movss dword ptr [ rsp + 4∗ r10 − 4 ] , xmm1

movss dword ptr [ rax − 4 0 ] , xmm2

movss dword ptr [ rax − 4 4 ] , xmm3

movss xmm1, dword ptr [ rax − 20 ]
movss xmm2, dword ptr [ rax − 16 ]
movss xmm3, dword ptr [ rax − 4 ]
movss xmm4, dword ptr [ rax ]
movaps xmm5, xmm1

mulss xmm5, xmm4

mulss xmm4, xmm2

mulss xmm2, xmm3



c.7 llvm optimized x64 machine code 157

mulss xmm3, xmm1

addss xmm2, xmm5

subss xmm3, xmm4

movss dword ptr [ rsp + 4∗ r10 ] , xmm1

movss dword ptr [ rax − 1 6 ] , xmm2

movss dword ptr [ rax − 2 0 ] , xmm3

add r10 , 3

add rax , 72

cmp r10d , 49

j n e . LBB5_3

mov eax , dword ptr [ rcx + 1544 ]
mov dword ptr [ rsp + 1 8 8 ] , eax
movss xmm1, dword ptr [ rcx + 1548 ]
movd xmm2, eax
movss xmm3, dword ptr [ rcx + 1560 ]
mulss xmm3, xmm2

movss xmm4, dword ptr [ rcx + 1564 ]
mulss xmm4, xmm1

addss xmm4, xmm3

mulss xmm2, dword ptr [ rcx + 1552 ]
mulss xmm1, dword ptr [ rcx + 1556 ]
subss xmm2, xmm1

movss dword ptr [ rcx + 1 5 4 4 ] , xmm2

movss dword ptr [ rcx + 1 5 4 8 ] , xmm4

mov eax , dword ptr [ rcx + 1576 ]
mov dword ptr [ rsp + 1 9 2 ] , eax
movss xmm1, dword ptr [ rcx + 1580 ]
movd xmm2, eax
movss xmm3, dword ptr [ rcx + 1592 ]
mulss xmm3, xmm2

movss xmm4, dword ptr [ rcx + 1596 ]
mulss xmm4, xmm1

addss xmm4, xmm3

mulss xmm2, dword ptr [ rcx + 1584 ]
mulss xmm1, dword ptr [ rcx + 1588 ]
subss xmm2, xmm1

movss dword ptr [ rcx + 1 5 7 6 ] , xmm2

movss dword ptr [ rcx + 1 5 8 0 ] , xmm4

mov eax , dword ptr [ rcx + 1608 ]
mov dword ptr [ rsp + 1 9 6 ] , eax
movss xmm1, dword ptr [ rcx + 1612 ]
movd xmm2, eax
movss xmm3, dword ptr [ rcx + 1624 ]
mulss xmm3, xmm2

movss xmm4, dword ptr [ rcx + 1628 ]
mulss xmm4, xmm1

addss xmm4, xmm3

mulss xmm2, dword ptr [ rcx + 1616 ]
mulss xmm1, dword ptr [ rcx + 1620 ]
subss xmm2, xmm1

movss dword ptr [ rcx + 1 6 0 8 ] , xmm2

movss dword ptr [ rcx + 1 6 1 2 ] , xmm4

movss xmm1, dword ptr [ rsp ]
addss xmm1, dword ptr [ rsp + 4 ]
movss xmm2, dword ptr [ rsp + 12 ]
addss xmm2, dword ptr [ rsp + 8 ]
addss xmm2, dword ptr [ rsp + 16 ]
addss xmm2, dword ptr [ rsp + 20 ]
addss xmm2, dword ptr [ rsp + 24 ]
addss xmm2, dword ptr [ rsp + 28 ]
addss xmm2, dword ptr [ rsp + 32 ]
addss xmm2, dword ptr [ rsp + 36 ]
addss xmm2, dword ptr [ rsp + 40 ]
addss xmm2, dword ptr [ rsp + 44 ]
addss xmm2, dword ptr [ rsp + 48 ]
addss xmm2, dword ptr [ rsp + 52 ]
addss xmm2, dword ptr [ rsp + 56 ]



158 life cycle of a kronos program

addss xmm2, dword ptr [ rsp + 60 ]
addss xmm2, dword ptr [ rsp + 64 ]
addss xmm2, dword ptr [ rsp + 68 ]
addss xmm2, dword ptr [ rsp + 72 ]
addss xmm2, dword ptr [ rsp + 76 ]
addss xmm2, dword ptr [ rsp + 80 ]
addss xmm2, dword ptr [ rsp + 84 ]
addss xmm2, dword ptr [ rsp + 88 ]
addss xmm2, dword ptr [ rsp + 92 ]
addss xmm2, dword ptr [ rsp + 96 ]
addss xmm2, dword ptr [ rsp + 100 ]
addss xmm2, dword ptr [ rsp + 104 ]
addss xmm2, dword ptr [ rsp + 108 ]
addss xmm2, dword ptr [ rsp + 112 ]
addss xmm2, dword ptr [ rsp + 116 ]
addss xmm2, dword ptr [ rsp + 120 ]
addss xmm2, dword ptr [ rsp + 124 ]
addss xmm2, dword ptr [ rsp + 128 ]
addss xmm2, dword ptr [ rsp + 132 ]
addss xmm2, dword ptr [ rsp + 136 ]
addss xmm2, dword ptr [ rsp + 140 ]
addss xmm2, dword ptr [ rsp + 144 ]
addss xmm2, dword ptr [ rsp + 148 ]
addss xmm2, dword ptr [ rsp + 152 ]
addss xmm2, dword ptr [ rsp + 156 ]
addss xmm2, dword ptr [ rsp + 160 ]
addss xmm2, dword ptr [ rsp + 164 ]
addss xmm2, dword ptr [ rsp + 168 ]
addss xmm2, dword ptr [ rsp + 172 ]
addss xmm2, dword ptr [ rsp + 176 ]
addss xmm2, dword ptr [ rsp + 180 ]
addss xmm2, dword ptr [ rsp + 184 ]
addss xmm2, dword ptr [ rsp + 188 ]
addss xmm2, dword ptr [ rsp + 192 ]
addss xmm2, dword ptr [ rsp + 196 ]
addss xmm2, xmm1

mulss xmm2, xmm0

movss dword ptr [ rdx ] , xmm2

add rdx , 4

dec r8d
j n e . LBB5_2

. LBB5_5 :
add rsp , 200

r e t


	I Introductory Essay
	1 Background
	1.1 Signal Processing for Music: the Motivation
	1.1.1 Artistic Creativity and Programming
	1.1.2 Ideas From Prototype to Product
	1.1.3 Empowering Domain Experts

	1.2 State of Art
	1.2.1 The Unit Generator Graph
	1.2.2 Aspects of Programming Language Theory
	1.2.3 The Multirate Problem

	1.3 Research Problem
	1.3.1 Open Questions

	1.4 About the Kronos Project
	1.4.1 Academic Activities
	1.4.2 Contents of This Report


	2 Methodology
	2.1 Theory
	2.1.1 Functional Programming
	2.1.2 Reactive Systems
	2.1.3 Generics and Metaprogramming
	2.1.4 Simple F
	2.1.5 Reactive Factorization

	2.2 Implementation
	2.2.1 Application Programming Interface
	2.2.2 Source Language and Units
	2.2.3 Internal Representation of Programs
	2.2.4 Compilation Transform Passes
	2.2.5 LLVM Code Generation


	3 Discussion
	3.1 The Impact of the Study
	3.1.1 Supplementary Example
	3.1.2 Comparison to Object Oriented Programming
	3.1.3 Alternate Implementation Strategies

	3.2 Future Work

	4 Conclusion
	References

	II Publications
	P1 Kronos: A Declarative Metaprogramming Language for Digital Signal Processing
	P2 A Unified Model for Audio and Control Signals in PWGLSynth
	P3 Introducing Kronos – A Novel Approach to Signal Processing Languages
	P4 Designing Synthetic Reverberators in Kronos
	P5 Kronos VST – the Programmable Effect Plugin
	P6 Recent Developments in the Kronos Programming Language

	P1 Kronos: A Declarative Metaprogramming Language for Digital Signal Processing
	P2 A Unified Model for Audio and Control Signals in PWGLSynth
	P3 Introducing Kronos – A Novel Approach to Signal Processing Languages
	P4 Designing Synthetic Reverberators in Kronos
	P5 Kronos VST – The Programmable Effect Plugin
	P6 Recent Developments in the Kronos Programming Language

	III Appendices
	A Language Reference
	A.1 Syntax Reference
	A.1.1 Identifiers and Reserved Words
	A.1.2 Constants and Literals
	A.1.3 Symbols
	A.1.4 Functions
	A.1.5 Packages
	A.1.6 Expressions
	A.1.7 Reactive Primitives

	A.2 Library Reference

	B Tutorial
	B.1 Introduction
	B.2 Examples
	B.2.1 Higher Order Functions
	B.2.2 Signals and Reactivity
	B.2.3 Type-driven Metaprogramming
	B.2.4 Domain Specific Language for Block Composition

	B.3 Using the Compiler Suite

	C Life Cycle of a Kronos Program
	C.1 Source Code
	C.2 Generic Syntax Graph
	C.3 Typed Syntax Graph
	C.4 Reactive Analysis
	C.5 Side Effect Transform
	C.6 LLVM Intermediate
	C.7 LLVM Optimized x64 Machine Code



