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B ABSTRACT

In the field of pitch-class set theory, a number of different similarity relations have
been developed with the purpose of identifying aspects of similarity between pcsets
and set-classes. Out of these, the present study concentrates on similarity relations
which compare interval-class or subset-class vectors. The focus is especially on simi-
larity measures, i.e. similarity relations assigning a degree of similarity for two set-
classes. Such a degree is given as a numeric value on some known scale of values.

Three main categories of similarity relations are identified. First, similarity re-

.lations not returning numeric values. Second, similarity measures comparing only
two interval-class or subset-class vectors at a time. Third, total measures comparing
all subset-class vectors belonging to two set-classes. This ordering of the categories
is considered to reflect increasing descriptive powers. A set of relevance criteria
which each similarity relation should fulfil is determined. 21 similarity relations pre-
sented previously in the pitch-class set-theoretical literature are then evaluated with
these criteria. Other means of demonstrating the strengths and weaknesses of indi-
vidual similarity relations are also used.

The RECREL similarity measure, belonging to the total measure category, is
introduced and evaluated with the set of criteria. The values it produces are exam-
ined from different viewpoints. Also, it is used to analyse aspects of Arnold
Schénberg's Op. 11, No. 1.

A demonstrational computer program constitutes a part of the study. With it
the user can examine the various stages of a RECREL comparison, as well as ma-
nipulate RECREL values in a number of different ways.
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B DEFINITIONS

Pitch-class (pc). The set of all pitches one or more octaves apart. The pcs will be la-
beled with numbers: C = 0, C sharp = 1,..B = 11.

Pitch-class set (pcset). A collection of pcs without duplication. The order between
the elements is not determined. A pcset is written in curly brackets, the elements be-
ing separated by commas.

Transposition (Tp). A transformation adding some transposition interval n to every

pc x in a peset. Each sum (x+n) is taken mod 12.

Inversion (I). A transformation replacing every pc x in a pcset with its inverse (12-x).
Each pcset T in set-class X has its inversion I(T) in the inversionally related set-class
I(X). Of the inversionally related SCs, also shorter expressions, such as "I-related
SCs," "I-pairs," etc., will be used.

Complement. The complement TC of pcset T contains all pes not included in T. Each
pcset in set-class X has its complement in the complement class XC.

Set-class (SC). A collection of pcsets mutually related by a transformation or a group
of transformations. In this study, the transformations used to define a set-class are
transposition and inversion. Two types of set-classes will be used. In the first of
these, the pcsets are related by Tn, only, in the other by T and/or I. We will use the
terms Tn (transpositional) class and Tn/I class, respectively.

According to this definition, a set-class is simply a collection of pcsets. In the
theoretical literature, however, SCs are routinely considered also as objects ab-



2 Definitions

stractly reflecting and representing the properties and characteristics of the individ-
ual pesets they contain. SCs, then, could be thought of as entities having abstract el-
ements, intervals and ics between the elements, ic contents, etc. We will follow this
convention. In our discussion we will use almost exlusively set-classes.

When referring to the SCs, we will use the nomenclature given in Forte
(1973a). Under Tp-classification the inversionally related classes will be distin-
guished by extra labels A or B. The class providing the "best normal order” (Ibid., 3-
5, 11-13) is always the A class, its inversionally related class the B class. If neither A
nor B appears in the name of a SC, it is inversionally symmetric.

Prime form. A pcset representing all member sets in a set-class. A prime form has
no special musical importance among the member sets. The criteria by which it is
determined, based on pc content, ordering and interval content, are mere conven-
tions. In this study we will use prime forms as given in (Forte 1973a:179-81).

Cardinality. The number of elements in a pcset. Given pcset S of cardinality n, we
will write #5 = n. Set-class X of cardinality n refers to a SC with n pcs in each of its
member sets. We will also use the term n-pc set-class, again meaning a SC whose
member sets have cardinality n. Furthermore, when referring to a 2-pc SC, we can
also use the term dyad class. Accordingly, a 3-pc SC is a triad class, a 4-pc SC a tetrad
class, a 5-pc SC a pentad class, a 6-pc SC a hexad class, a 7-pc SC a septad class, an 8-pc
SC an octad class, a 9-pc SC a nonad class and a 10-pc SC a decad class. All SCs of car-
dinality n constitute the cardinality-class n.

Intervals, Interval-classes (ics). Given successive pcs x and y, the ordered pc-interval
between them equals (y-x) mod 12. If x and y are unordered, there are two (ordered)
pc-intervals between them, (y-x) and (x-y). The pair of intervals, being complemen-
tary mod 12, forms an interval-class (ic). By convention each ic is represented by the
smaller of the two intervals. The number of ics is seven, 0-6.

Interval-class vector (ICV). An array indicating how many instances of ics 1-6 can be
found in a given pcset. An ICV can be given also for a SC. An ICV is written in
square brackets. The ICV of the set-class X is denoted ICV(X).

Z-relation. SCs X and Y are Z-related if X # Y and ICV(X) = ICV(Y).1

1 Forte (1973a:21).




Definitions 3

Subsets, Subset-classes, Inclusion. pcset S is included in pcset T (S is a subset of T)
if each element in S is also an element in T. Set-class Y is (abstractly) included in set-
class X (Y is a subset-class of X) if for every pcset S in Y there is at least one pcset T in
X so that each element in S is also an element in T. The equation n!/(m! * (n-m)!)
gives the number of subsets of cardinality m contained in a pcset of cardinality n. (m
# 0, m # 1, m # n).2 A 10-element pcset, for example, has 252 5-element subsets.
Likewise, the number of instances of pentad classes included in a decad class is 252.

Embedding function (Embedding number). Given SCs A and X, the embedding
number of A in X, notated EMB(A,X), is the number of pcsets in A which are subsets
of a given pcset in X. For example EMB(3-1,4-1) = 2, as any member set in 4-1 has
two subsets being members in 3-1. Given the prime form of 4-1, {0,1,2,3}, the subsets
belonging to 3-1 are {0,1,2} and {1,2,3}. The value of EMB(A,X) can be higher than
zero only if #A <#X and A is a subset-class of X.3

n-class vector (nCV), Subset-class vector. The n-class vector of set-class X, #X > n, is
an array of numbers comprising each of the values EMB(A,X), the argument A run-
ning through all SCs in the cardinality-class n in the order given by the Forte
nomenclature. The vector will be notated nCV(X). 2CV(X) is identical to ICV(X).
2CV(X), 3CV(X), ..#XCV(X) are together the subset-class vectors of X. The examples
below give two versions of the 3-class vector of SC 5-15. The first one is being com-
piled under Tn/I-classification, the second one under Tn-classification.

0 0]
11 12

3Cv({5-15) = [1 0 2 1 0
1 3 4 9 10

0 2 00 4
2 5678 1
The numbers between the square brackets are called components. The numbers below
these are indexes, referring to the ordinal numbers in the SC names of the 3-pc classes
in the Forte nomenclature. For example in the vector above, the component four
above the index 8 indicates that four instances of the SC 3-8 are abstractly included
in 5-15. The vector below gives some indexes twice, the left one always referring to
the A class, the right one to the B class. Now the component in the index referring to
3-8A is two, as is also that in the index referring to 3-8B. The indexes will not always

be shown.

2 Forte (1973a:27).
3 Lewin (1977), Morris (1987:89-90).

4 Lewin suggests the name M-class vector for a vector like this in (1987:106-7). We use n in order to be
consistent with the use of the symbol in the names of some similarity measures, like MEMB and
%RELp. Thus, MEMBp, compares n-class vectors.



4 Definitions

3Cv(5-15) = [

0 00 0 1 1 31 1 000 2 2 31 00
2 2 3 3 4 4556 77 8 8 910111112

%-vector. A normalised n-class vector. Instead of indicating how many instances of
each SC of cardinality n is embedded in a given SC X, the vector gives the percentual
share each n-class has of X's subset-class contents of cardinality n. To transform
nCV(X) into the corresponding n-class %-vector of X, or nC%V(X), each component is
divided by the sum of all components and multiplied by 100. The sum of the com-
ponents is always 100. A component may be an integer or a fraction. For the sake of
convenience, all components in the %-vectors will be rounded to the nearest integer.
All actual calculations using the %-vectors, however, will be done to full accuracy.
When transformed into 3C%V(5-15), the n-class vector 3CV(5-15) given above is as
follows:

10 101 20 20 1

3CsV(5-15) = [ 0 0 0 0 0]
1 6 0

0 0 0 010101010 0 0202010
2 2 3 3 4 4 5 5 7 7 8 8 91011 11 12
SC 3-1 is included in 5-15 proportionate to 10% of the total, SC 3-8A is included pro-

portionate to 20% of the total, etc.

Similarity relation. A general term comprising a number of different approaches
aimed at assisting in determining whether two or more pcsets or set-classes can be
deemed similar or dissimilar to one another. Notions on which these relations are
based include pc contents, ic and subset-class contents, SC family membership, etc.
In the pcset-theoretical literature there is no universal agreement on how a similarity
relation should be defined or what criteria a given theoretical construct should fulfil
in order to be called one. In this study we will concentrate on vector-based similarity
relations: context-free, non-transitive comparison procedures comparing the inter-
val-class or subset-class vectors of two pcsets or set-classes at a time.

Similarity measure, Total measure. In this study, a similarity measure (a measure)
is defined to be a vector-based similarity relation that compares the interval-class or
subset-class contents of two pcsets or SCs at a time and produces a degree of similar-
ity as a result. The degree is given as a numeric value on some known scale of val-
ues. A measure comparing subset-classes of all cardinalities mutually embeddable
in two SCs will be called a total measure.

%RELp. A similarity measure used both as an independent measure and as a part of

RECREL, usually to be evoked many times during a single RECREL comparison.
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The subscript n indicates that any n-class %-vectors can be compared. In %REL3, for
example, two 3-class %-vectors are compared. A %RELp comparison is performed
by taking the absolute values of the differences between corresponding nC%V com-
ponents, adding these together and dividing the sum by two. The result, giving the
extent to which the proportionate n-class distributions of the two SCs differ, lies al-
ways between 0 and 100, inclusive. The former indicates maximal similarity, the lat-
ter maximal dissimilarity.

k measure (k number). A similarity measure counting numbers of ic instances em-
bedded mutually in two SCs. Given the interval-class vectors of two set-classes, the
k value is the sum of the smaller components in each pair of corresponding ICV
components.

Comparison group. The comparison group #n/#m contains all SC pairs {X,Y} such
that X belongs to the cardinality-class n and Y belongs to the cardinality-class m.
When n = m, a SC is not compared to itself, and a given pair {X,Y} = {Y,X} is counted
for only once. When n # m, the comparison group #n/#m contains a n*am SC pairs,
an and am being the numbers of SCs in cardinality-classes n and m, respectively.
When n = m, the number of SC pairs is ((an*an)-an)/2. Under Tn/I-classification the
number of SC pairs in the comparison group #3/#3 is 66, in #3/#4, 348, in #5/#6,
1900, etc. When discussing aspects common to all SC pairs in the comparison group
#n/#m, we will speak of "#n/#m pairs,” "#n/#m comparisons," etc.

Comparison groups can also involve ranges of cardinality-classes. The com-
parison group #3/#2-#12, for example, contains all SC pairs {X,Y} where X is a triad
class and Y runs through the SCs of all cardinalities from 2 to 12. Again, a SC is not
compared to itself, and when #Y = 3, a given pair {X,Y} = {Y,X} is counted only once.
The comparison group #2-#12/#2-#12 contains all SC pairs except those involving
SCs 0-1 and 1-1.

The individual comparison group X/#n contains all SC pairs {X,Y} where X is a
constant referential SC and Y runs through the SCs in the cardinality class n.
Correspondingly, the individual comparison group X/#n-#m, n < m, contains all SC
pairs {X,Y} where X is the referential SC and Y runs through the SCs of cardinalities
n to m. Whenever it occurs, the pair {X,X} is omitted.

Value group, The value group #n/#m contains the values that a given similarity
measure returns to the SC pairs in the comparison group #n/#m. The measure pro -
viding the values can be selected freely.



B CHAPTER 1
INTRODUCTION

Observing aspects of similarity between musical objects, as well as guiding one's
attention with the help of these observations, are notions present everywhere in
the work of an analyst or a composer. Being ever-present does not correlate with
being familiar, however. The nature and dynamics of similarity assessments in
music are questions of extraordinary complexity.

The advent of pitch-class set theory during recent decades has produced a
wide range of studies concentrating specifically on similarity assessments.! This,
no doubt, has to do with the fact that pcset theory offers some kind of "laboratory
conditions” for a number of tasks. Each and every pitch combination in the tem-
pered scale has only one pcset identity, each and every pcset only one set-class
identity. A set-classification is an exact framework offering a wide range of possi-
bilities for relating the elements it contains. We can identify properties of an in-
dividual SC, compare the properties of different SCs, and, whenever necessary,
gather results from all comparisons in the entire SC universe.

Pitch-class set-theoretical tools developed with the purpose of assessing
similarity between pcsets and set-classes are usually grouped under the heading
similarity relations. In this study we will examine a number of these tools, as
they constitute the theoretical background from which our main topic, the
RECREL similarity measure, arises.

1 The reader unfamiliar with the background, basic concepts and objectives of pitch-class set theory
is directed to a source giving a general discussion on these questions. Among these are Straus (1990),
Forte (1973a), Rahn (1980), Forte (1985) and Morris (1987).



Introduction 7

In the pcset-theoretical literature, there is no universal convention or agreement
on how a similarity relation should be defined, or what criteria a given theoreti-
cal construct should fulfil in order to be called one. Simply, the term comprises a
number of different approaches aimed at assisting in determining whether two
or more pcsets or set-classes can be deemed similar or dissimilar to one another.2
Notions on which these relations are based include pc contents, ic and subset-
class contents, SC family membership, etc.

Giving a general view of similarity relations is complicated, due to border-
line cases, different interpretations of a single concept, etc. For example, a rela-
tion may be given without any concrete applications in mind, only in order to
chart available possibilities.3 Or, a relation may not be specifically associated with
similarity considerations at all, but may be so consistently enjoyed by SCs with
similar features that it is simply interpreted as a similarity relation, or at least as
an important element in one.# A relation may even be expressly defined as not
being a similarity relation, but may be used under circumstances where it as-
sumes properties of one. In (1979-80:483) Rahn makes a clear distinction between
an equivalence relation (transitive) and a similarity relation (non-transitive), but
notes that there can be interaction between the categories: a recursively generated
chain of pcsets forms an equivalence class which also can be viewed as quantify-
ing similarity within itself by "nearness" in the chain.

Furthermore, a single concept or closely related concepts may be examined
from altogether different viewpoints. According to Lewin (1977:194), for exam-
ple, the interval-class vector (ICV) of Forte (1973a), the interval function of
Lewin (1959) and the common-note function of Regener (1974) appear to describe
the same musical phenomenon, but in fact model very different ones. The ICV
is a rigorously harmonic concept, whereas the interval function is as rigorously
contrapuntal in conception (Lewin 1977:201). The common-note function, in
turn, tabulates relations not involving intervals as such, but rather transforma-
tions (Ibid., 218). In the most typical case of different interpretations, writers see

2 Many theorists exemplify their similarity discussions with the help of pcsets, whereas others
use set-classes as their preferred objects of reference. Throughout this study, we will use set-classes
(SCs) as our norm. When examining concepts and definitions presented elsewhere, we may modify
them to suit this convention.

3 Rahn, for example, briefly outlines a similarity relation based on degrees of symmetry. He does
not provide any analysis on its usefulness or descriptive powers (Rahn 1979-80:484).

4 Consider, for example, the central position of the complement relation in Forte's set complexes
(Forte 1973a:93-100). In (Ibid., 78) Forte even states that it seems reasonable to regard the comple-
ment of a SC as a reduced or enlarged replica of that SC.
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ICVs as describing either interval-classes (as distances between points), or in-
stances of the dyad classes (as "2-note chord types").>

1.1 THE SIMILARITY RELATIONS TO BE EXAMINED IN THIS STUDY

It is not our intention to discuss the field of similarity relations in its entirety.
This subject would merit a detailed study of its own. We will concentrate only
on certain types of relations, i.e., those that are based on principles similar to
those prevailing in our main topic, the RECREL similarity measure. To be more
specific, we will examine vector-based constructs: context-free, non-transitive
comparison procedures comparing the interval-class or subset-class vectors of
two pcsets or set-classes at a time. We believe these comprise the most fruitful
methods in assessing SC similarity yet offered. Within this category we will espe-
cially concentrate on similarity measures. We define them to be vector-based
similarity relations comparing the interval-class or subset-class contents of two
SCs at a time and producing a degree of similarity as a result. This degree is given
as a numeric value on some known scale of values.® A similarity measure com-
paring subset-classes of all cardinalities mutually embeddable in two SCs will be
called a total measure.

A number of well-known theoretical constructs will be excluded from our
discussion because there do not seem to be commensurable criteria with which
to analyse how their descriptive powers compare with those of the similarity
measures. Among those excluded are the different systems of SC families that
gather SCs into Set Complexes (Forte 1964 and 1973a, Kaplan 1991, described in
Isaacson 1992), Permutation Families (Himeenniemi 1983), Regions (Ericksson
1986), or Harmonic Genera (Forte 1988).7 Some obvious notions distance our
present interests from these, while conceding that ideally such a system might
provide, in the words of Forte (1973a:93), a comprehensive model of relations
among SCs. Firstly, some SCs X and Y may belong to a family of 5Cs not because
they are suitably related to each other, but because they are suitably related to

5 In this study we will use both the interval-class and the dyad class viewpoints. The former will
be used in the context of relations comparing only ic contents, the latter with relations comparing
subset-classes of all cardinalities.

6 This definition is not a universal one. Forte (1973a:108) uses the term similarity measure when re-
ferring to his similarity relations that do not fulfil the criteria given here.

7A comprehensive summary of most of these is given in Isaacson (1992:157-91).
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some referential SC Z (such as the Nexus SC).8 In (1973a:108) Forte states that,
when viewed from the standpoint of internal similarity relations, a set complex
may be far from homogeneous. Secondly, the properties determining family
membership may be such that the relation between some two members makes
sense only when examined with respect to the family. In other words, the rela-
tion between the two is meaningful because of a specific context, not because of
their internal properties.?

Other similarity relations which will be excluded from further analysis
are, for example, the Rp relation (Forte 1973a:47),10 a generalisation of this, the
Degree of Inclusion (Regener 1974:207), and modifications of the latter, the
Degree of Degree of Inclusion and its "adjusted" version (Rahn 1979-80:486-487).
The Exclusion Relation, given in Clough (1983), gathers "families" of excluded
SCs and is also beyond our present scope. Some concepts, like the above-men-
tioned Interval Function and Common-note Function, given in Lewin (1959)
and Regener (1974), respectively, actually do involve vectors. In the service of a
similarity relation, however, these would resemble ICVs to the extent that there
is no need to examine them separately.

Concepts that also give cause for considerations of similarity but do not be-
long to the range of our present interests are those that in one way or another
involve ordering. Among such concepts are, for example, the Basic Interval
Patterns (Forte 1973a:63-73 and 1973b), the Voice Pair Interval Sets (Chapman
1981) and the Constellations of Hoover (1984). Finally, we will exclude similarity
relations that compare superset-class vectors. We believe that the superset-class
relations of a SC offer much weaker points of reference to similarity assessments
than do its subset-class relations. Consider, for example, the 6-pc and 5-pc whole-
tone classes 6-35 and 5-33, having intuitively an exceptionally high degree of
similarity between them. Every subset-class of cardinality 5 or smaller in 6-35 is
also a subset-class in 5-33. Moreover, the proportionate subset-class distributions

8 Morris notes in (1987:330 n 61) that the K and Kh relations offer an example of a similarity rela-
tion. Here, however, our focus is on all internal relations between the family members, not only
those involving the referential SC with which a family is gathered.

For a definition and discussion on the nexus set concept, see Forte (1973a:101, 210).

9 Ericksson's Region 1, for example, contains both SCs 2-1 and 6-Z10, their respective ICVs being
[100000] and [3 3 3 3 2 1] (Ericksson 1986:102-3). It is difficult to see how the two ic contents could
be deemed similar.

10 Rp relation holds between two SCs X and Y of cardinality n if at least one SC of cardinality n-1
is included in both of them. If two pcsets S and T share less than n-1 pcs but are member sets in two
SCs enjoying the Rp relation, we say that the Ry, relation holds between S and T but is weakly rep-
resented.
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of the two classes are identical.1l Their superset-class relations, by contrast, are
entirely different. For example, all 7-pc superset-classes of 6-35 are instances of SC
7-33, whereas those of 5-33 are instances of 16 different Tn-classes.12

1.2 SIMILARITY RELATIONS IN PCSET-THEORETICAL LITERATURE

In the pcset-theoretical literature, the overall reception of similarity relations
could be characterized as positive but usually not enthusiastic. Commentators,
while perhaps criticizing a given relation or relations, recognize in principle that
a trustworthy comparison method would be of interest and benefit. The concep-
tual basis of the relations - the possibility of identifying similarity between such
abstract entities as pcsets and SCs - is not contested, but opinions vary on how
concrete conclusions can be drawn from the results.

Hoover, being one of the sceptics, states that the nature of even the rela-
tively low level of abstraction involved in a pcset is such that precisely defined
relationships between pcsets cannot assure consistent musical relationships. A
pcset relationship is hardly a complete determinant of the musical sense of all
instances of the two pcsets (1984:165-166). Chapman, in turn, deems the roles of
at least some similarity relations secondary at best. According to him, Forte's
widely discussed Rg, R1 and R relations are abstract reflections of intervallic re-
lations. They play only a minor role in most atonal analysis, usually appearing as
supplemental observations upon analyses based on pitch-class set recurrence
(1981:276-8). An interesting view is given by Beach. He recognizes that different
degrees of SC similarity exist, but doubts the usefulness of similarity measures.
Identifying just minimal and maximal similarity is enough, as "enumeration of
other levels would only serve to encumber an already complex and sophisticated
theory of sets and set relations” (Beach 1979:11, quoted in Isaacson 1992:19-20).

Rahn, being more optimistic, sees similarity relations in a dynamic con-
text, as integral parts in a hypothetical "general theory of harmony.” Such a the-
ory needs a context-free relation of similitude or reasonable facsimile for its basis
(1989:9). A "theory of instances,” in turn, is needed as a front end to choose the

11 A distribution like this indicates how large a percentual share each embedded class has among
all subset-classes of the same cardinality. This concept is the basis of several similarity measures,
including RECREL.

12 During the initial stages of the RECREL project, a version comparing also superset-class vectors
was tested. It was abandoned for the reasons just stated.

A number of similarity relations involving superset-classes are presented and discussed in
Isaacson (1992:136-56).
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individual member sets. The latter theory could be based on common-pc consid-
erations and a criterion of least pc distance between moving (noncommon) pcs
(1989:5). Some writers, when arguing for their relations, do not point only to
conceptual or intuitive notions, but also straight to listening experiences. Morris,
for example, states that his SIM relation provides a rationale for the selection of
SCs that ensure predictable degrees of aural similitude (1979-80:446). Later on he
notes that the value zero (indicating maximal similarity in SIM) does not neces-
sarily mean that the SCs involved are equivalent under Tn and/or Tn/I as they
can be also Z-related. According to him, if two Z-related SCs are comparably rep-
resented in a musical setting, they will have a good deal of sonic similarity (Ibid.,
447).

According to the most optimistic opinions, a similarity relation can aid
greatly in our understanding of both conventional and modern music (Solomon
1982:104-106, on the R relation), and be an important and useful tool for music
analysis (Isaacson 1990:25, on the IcVSIM relation).

1.3 QUANTITATIVE AND QUALITATIVE SIMILARITY

Pcset-theory does not assign any qualitative characteristics to any pcset-theoreti-
cal objects. Consequently, all assessments of SC similarity are purely quantita-
tive.13 We observe, for example, the extent to which two subset-class contents
consist of corresponding elements, and equate high extents with high degrees of
similarity. No other aspects, measurable or non-measurable, effect the outcome.
This principle, determining a precise "testing ground" for the measure-
ments and defining similarity only with respect to it, goes often unnoticed. The
reason is that usually it is not in conflict with qualitative similarity assessments.
An individual observer may associate SCs with strong qualitative characteristics
and still agree that SCs with disjoint subset-class contents are dissimilar, those
with near-identical ones similar. Borderline cases do exist, however. Suppose we
have SC pairs {X,Y} and {Z,W} so that X shares exactly half of its interval-class in-
stances with Y, Z half of its interval-class instances with W. If shared-instance ex-
tent is set to be the sole criterion of SC similarity, the pairs are equally similar
and the non-shared instances have no effect whatsoever. The observer, how-
ever, might assign qualitative characteristics to the non-shared instances, for ex-
ample so that those in both X and Y seem consonant, whereas those in Z seem

13 See related remarks in Alphonce (1974:153) and Isaacson (1992:79).
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clearly different from those in W. The former pair, then, would be favored in
terms of qualitative similarity.

The decision to restrict our observations to only quantitative aspects arises
from cases like this. Introducing non-pcset-theoretical, non-measurable elements
could have benefits when relating isolated cases, like pairs of small-cardinality
SCs familiar from traditional harmony. But the effects these elements would
have among all comparisons, or the possible distortions they would cause, are
impossible to determine accurately. For example, if we deem icl closer to ic2 than
to ic4, what is the actual weighting function which exposes the icl-ic2 similarity
during a measurement? If some function would work fine with triad class pairs,
would it do so also with nonad class pairs, etc?

This is far from suggesting that qualitative assessments should be ignored.
They could, and eventually probably will, have interesting interaction with as-
sessments of SC similarity. But it is important to understand that coordinating
these aspects requires a step beyond the scope of pcset-theory in general and this
study in particular. Therefore, in the following discussion, by the concept "simi-
lar" we will mean only similarity with respect to the aspects we observe.

14 EVALUATING THE VALIDITY OF A SIMILARITY RELATION

In principle, the analysis of a similarity relation is carried out in two stages. The
first stage comprises the analysis of the comparison procedure itself, and is a rela-
tively straightforward task: Is the relation generally well-conceived, or do some
aspects in it appear to be artificial or counterintuitive?; Does it compare only the
properties it is designed to compare, or do other, undeclared aspects also have an
effect?; If so, are the results somehow distorted?; Is the way with which the re-
sults are presented meaningful, or is there an evident possibility of misinterpret-
ing them?; etc.

The second stage is the analysis of the actual descriptive powers of the rela-
tion, a task with a sort of built-in paradox. Le., when examining results that are
produced by an exact theoretical construct comparing exactly defined objects (SCs)
in a space of exactly known limits, the theorist is assisted by little else than intu-
ition. The final evaluation is a combination of many individual assessments: Is
the scale of values from a given comparison group credible when related to that
from another?; If some SC pair X is experienced to be closely similar, pair Y even
more so and pair Z nothing but, do the corresponding values seem to reflect this
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meaningfully?; Does intuition confirm or contradict results suggesting that all
SCs of cardinality n are equally similar to all SCs of cardinality m?; etc.

Obviously then, conclusions drawn from absolute measurements are of
relative nature. The exactness of the formal foundations of pcset-theory does not
guarantee exactness for a similarity relation. Like any concepts involving a
highly complex mixture of different considerations, the relations are to be im-
proved by subjecting them to careful analysis, criticism and suggested modifica-
tions. These help to bring about novel hypotheses and discard unsatisfactory
ones, gradually increasing our awareness of the subject.

1.5 ON THE OBJECTIVES OF THIS STUDY

We believe that a reliable method for identifying SC similarity would have a
wide range of important applications in analysis, composition and music theory.
In our opinion, however, most of the previously presented similarity relations
perform this task less than successfully.

Some of them do not distinguish between degrees of similarity at all, an
aspect we think is in stark contrast with the very basis of assessing SC similarity.
Our intuition does not suggest a sharp distinction between "similar" and "not
similar,” comparable to observing a light that can only be switched on or off.
Obviously, a gradation allowing intermediate degrees between the extremes
must be involved. Some other similarity relations do produce values indicating
degrees of similarity, but are based on comparisons between limited reference
materials, such as ic contents. This, we believe, weakens their descriptive pow-
ers. A well-known deficiency resulting from this is the inability to discriminate
between Z-related SCs. Furthermore, some relations are of limited reliability be-
cause the methods with which they compare SCs contain counterintuitive fea-
tures, even clear conceptual errors. What is claimed to be measured does not en-
tirely coincide with what is actually being measured.

One of the main objectives of this study is to present this criticism in a
concrete and detailed manner. The second objective, the principal one, is to offer
an alternative to existing similarity relations. It is our belief that comparing en-
tire subset-class contents constitutes the most reliable basis for assessing SC simi-
larity. We will analyse the existing total measures, discussing ways to share their
strengths and avoid their weaknesses. The conclusions we draw are then forged
into concrete principles incorporated in the RECREL similarity measure.



14  Chapter 1

1.6 THE CHAPTERS IN OUTLINE

In chapter 2, notions relevant to assessments of SC similarity are examined at an
abstract level. The aim is to identify what sort of conditions a similarity relation
must fulfil before it can be said to produce meaningful and reliable results. The
conditions are presented as a set of criteria, with the help of which the validity of
the various similarity relations offered in the literature can be evaluated.

The actual evaluations are given in chapter 3. Every relation is examined
with respect to each criterion in the set of criteria. Strengths and weaknesses out-
side the scope of the criteria are also identified and analysed, usually with the
help of individual SC comparisons. To make the evaluations as accessible as pos-
sible, all relations are presented in a strictly uniform manner. The entries are: a
characterization of the relation with respect to a categorization given at the be-
ginning of the chapter; a short verbal description of the comparison procedure; a
mathematical formula (whenever the author of the relation provides one); an
example or a few examples; a list of the evaluation criteria the relation fulfils; in-
formation about the entire set of values (for similarity measures only); informa-
tion about individual value groups, given as a table (for measures only); analy-
sis. The analysis sections of some relations are divided into further sections, con-
taining special topics such as comparisons between different similarity relation
categories, analysis of values belonging to inversionally related and Z-related SC
pairs, etc. \

Using the concepts introduced in chapters 2 and 3, the RECREL similarity
measure is presented in chapter 4. Due to its complexity the measure will be in-
troduced in three stages, which describe the comparison procedure in increasing
detail. Examples are followed by two different RECREL formalisations, and fi-
nally, we examine which evaluation criteria RECREL fulfils.

The values which RECREL produces are analysed in chapter 5. The aspects
examined first are those of the most general nature: the lowest and highest val-
ues, the number of distinct values, the distribution of the values, the values all
SCs in a given cardinality-class produce with SCs of all cardinalities, the value
groups #n/#m, etc. After this, a study is made of what sort of values RECREL
produces to SCs that enjoy relations often associated with close similarity. There
will be five categories: inversionally related SCs, Z-related SCs, complement
pairs, SCs of cardinality n and their subset-classes of cardinality n-1, M-related
SCs.



Introduction 15

In chapter 6 RECREL is evaluated from another point of view, as an analytical
tool. The work to be examined is Arnold Schénberg's piano piece Opus 11,
Number 1. First, results concerning prominent SC materials and the use of those
materials are adopted from two earlier analyses offered in the literature. An ex-
amination is then made of how the suggested harmonic characteristics of the
music (resulting from specific types of SC arrangements) correlate with results
generated with RECREL. Next, several palindromic SC successions are identified
in the music and analysed with RECREL. Finally, the measure is used to define
certain types of SC families. These, in turn, are used to analyse passages contain-
ing unusually high concentrations of closely related SCs.

A glossary summarizes the most important concepts associated with
RECREL. The appendix contains a manual for a demonstrational computer pro-
gram. With the program the user can examine the various stages of a RECREL
comparison, as well as manipulate RECREL values in a number of different
ways. Instructions in how to obtain a copy of the program are given in the ap-

pendix.
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SIMILARITY RELATION EVALUATION CRITERIA

2.1 INTRODUCTION

In this chapter we will examine what sort of conditions a similarity relation
should meet before it can be said to serve its purpose well. First, in section 2.2, we
analyse a previously presented set of criteria identifying some of these condi-
tions. Then, in section 2.3, we introduce a set of criteria of our own. This criteria
will be our reference point when we analyse various similarity relations in chap-
ter 3. The criteria are six in number, one of them being further divided into four
subcriteria. The criteria are connected with the cardinalities of the compared SCs,
cardinalities of the subset-classes with which they are compared, the scales of
values the measures produce, etc. Each criterion will be analysed in detail in sec-
tions 2.4.1 - 2.4.5.

At the end of the chapter we discuss two topics closely related to the crite-
ria. The first one is the status of different subset-class cardinalities in the service
of a similarity measure: Does it make a difference if a measure processes subset-
classes of all cardinalities as one large group, or each cardinality as an indepen-
dent entity?; Do subset-classes of different cardinalities seem to reflect similarity
in a consistent manner?; etc. (Section 2.5). In section 2.6, we analyse the relation
between a similarity relation and a set-classification.



Evaluation Criteria 17

2.2 ISAACSON'S CRITERIA

In the literature, authors often point to unsatisfactory features of previously pre-
sented similarity relations, and point to favourable ones in those they are about
to introduce. It is rare to find detailed analysis of minimum conditions which a
relation must meet in order to be valid, however.

Isaacson (1990:2) suggests three criteria for similarity relations comparing
interval-class contents. A relation should (1) provide a distinct value for every
pair of SCs, (2) be useful (not just usable) for SCs of any size, (3) provide a wide
range of discrete values.

The first criterion rejects a number of relations for not being similarity
measures. They provide an insufficient degree of discrimination, the yes-or-no
type of outcome indicating only whether two SCs enjoy the relation or not. We
assume that the second criterion means that a measure must produce meaning-
ful results from comparisons between SCs of all cardinalities in order to be use-
ful. What is more, this criterion discourages the use of some measures, as they
are designed for SCs of the same cardinality only. The meaningfulness of crite-
rion (3) is not as evident as that of the two previous ones. The set of values pro-
duced by some ideal similarity measure would truthfully describe the degrees of
similarity between all SC pairs. It is difficult to see how we could meaningfully
place any concrete expectations on this set of values in advance. It might consist
of a wide range of discrete values, or it might not. Its properties would reflect the
properties of the SCs, not those of the measure. We deem the third criterion
more of a recommendation than a condition on a par with the two previous
ones.

The three criteria provide a basis for the analysis of different similarity re-
lations in Isaacson (1990). The focus is strictly on ic content similarity, to the ex-
tent that some of the relations are examined only with respect to ic contents, al-
though they would also allow the whole subset-class contents to be compared
(Ibid., 8-13). Our own set of criteria, to be introduced below, reflects our convic-
tion that comparing the entire subset-class contents of two SCs is a better starting
point for a similarity relation than comparing ICVs only.
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2.3 SIMILARITY RELATION EVALUATION CRITERIA
A similarity relation should:

C1) allow comparisons between SCs of different cardinalities
C2) provide a distinct value for every pair of SCs
C3) provide a comprehensible scale of values, so that
C3.1) all values are commensurable
C3.2) the end points are not just some extreme values, but can be meaning-
fully associated with maximal similarity and dissimilarity
C3.3) the values are integers or other easily managable numbers
C3.4) the degree of discrimination is not too coarse or unrealistically fine
C4) produce a uniform value for all comparable cases
C5) observe mutually embeddable subset-classes of all meaningful cardinalities
C6) observe also the mutually embeddable subset-classes not in common be-
tween the SCs being compared

24 ANALYSING THE CRITERIA
24.1 Criteria Cl and C2

Our second criterion is the same as the first one in Isaacson (1990), while C1 is
connected to Isaacson's second criterion.l

2.4.2 Criterion C3: A Comprehensible Scale of Values

The third criterion is divided into four parts, listed in order of decreasing impor-
tance. C3.1 is one of the most important in the whole set of criteria. C3.2, when
met, is useful as it gives natural points of comparison when relating different
values to each other. C3.3 is as much a recommendation as it is a requirement,
stating simply that easily managable values make a similarity measure more
convenient to use. C3.4 is of a very general nature, calling for scales of values

1 Asit may be difficult to remember precisely what each criteria stated, we shall at times refer to
them with informal reminders, such as "the cardinality difference criterion C1," "the value com-
mensurability criterion C3.1," "the total subset-class contents criterion C5," etc.
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with degrees of discrimination which neither underestimate nor overestimate
our intuitive ability to identify grades of similarity.

2.4.2.1 Criterion C3.1: Commensurable Values

C3.1 states that there must be only one uniform scale of values for all compar-
isons, regardless of the cardinalities of the SCs being compared. Let us analyse the
meaning of this criterion with a concrete example. Suppose we measure ic con-
tent similarity between pairs of SCs by first adding together the corresponding
ICV components if both are nonzero and then adding together the individual
sums. In principle, the higher the final sum, the higher the degree of similarity
between the classes.2 Suppose we compare in this way all SC pairs in the three
comparison groups #3/#3, #3/#4 and #4/#6. In the resulting value group #3/#3,

all 66 values lie between 0 and 5, inclusive. The 348 values in value group #3/#4
lie between 0 and 9. In value group #4/#6, the 1,450 values lie between 5 and 21.3

Let us examine only instances of the value 5. In value group #3/#3 it is
the maximum value. In #3/#4 it is situated in the middle range of values and in
#4/#6 it is the lowest value. When relating the values to each other, we are pre-
sented with two alternatives. On the one hand, we could conclude that even if
the numbers are the same, they are from three different value groups and repre-
sent three different degrees of similarity. On the other hand, we could conclude
that because the pairs share a uniform value, they must represent a uniform de-
gree of similarity. The argument in favour of the former alternative is obvious.
The numbers of ic instances involved in a #3/#3 comparison, a #3/#4 compari-
son and a #4/#6 comparison differ considerably. A value being uniform in abso-
lute terms is anything but uniform when related to the sizes of the ic contents
involved. For two triad classes the sum of components in the two ICVs is 6. For a
#3/#4 pair the corresponding figure is 9, for a #4/#6 pair, 21. Obviously, 5 out of
6 suggests stronger similarity than 5 out 9, or 5 out of 21.

If we choose the latter alternative and take each value at its "face value"
instead of scaling it to the sizes of the ic contents, the measure would offer us the
following results: the most similar #3/#3 pair represents the same degree of sim-
ilarity as the most dissimilar #4/#6 pair; the most similar #4/#4 pair represents a
lower degree of similarity than the most dissimilar #4/#8 pair; when compared

2 The measure in question is Rahn's MEMB?, to be examined in detail in chapter 3.

3 The comparison groups were compiled under Tp,/I-classification.
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to both itself and to SC 12-1, every SC X of cardinality 11 or lower would get a
higher value from the comparison MEMB2(X,12-1) than from MEMB2(X,X).4
Results like these would be, of course, nothing short of absurd, and show
that these seemingly uniform values are in fact incommensurable. This same
problem of different scales of values for different comparison groups applies also
to a number of other measures besides MEMB? (s.i., SIM, k, sf, IcVSIM, TMEMB).
Some writers recognize this problem (Morris 1979-80:450), others do not. It can be
avoided either by avoiding comparisons between values from different value
groups, or, more fruitfully, by developing a modification which eliminates the
undesired property (ASIM and IcVD1] from SIM, ak from k, ATMEMB from
TMEMB, %RELp from sf).> In our opinion, inability to meet the criterion C3.1 is

a defect which seriously limits the usefulness of a similarity measure.

24272 Criterion C3.2: Meaningful Extreme Values

It is beneficial if the numerical limits of a scale of values are some easily under-
standable numbers, such as 0 and 1 or 0 and 100.6 Extreme values such as these
provide a clear conceptual frame to which all intermediate values can be easily
related. When this is not so, the maximum value cannot be intuited from any
evident properties of the relation, it being rather some number representing the
highest result obtained from all comparisons. This can mean that the conceptual
frame is not evident and a given value must be processed further in one's mind
to understand its position on the scale. It is easier to relate 0.75 to 1 or 75 to 100
than, say, 2.73 to 3.64, even though the first figure of each pair is three quarters of
the latter in each case. 3.64 is the highest value produced by the IcVSIM relation.

24.2.3 Criterion C3.3. Easily Managable Values

It is beneficial if each value is an integer or some other type of easily managable

4 The results are from the MEMB value group information table (section 3.6.10) and from addi-
tional comparisons.

5 All these measures will be analysed in detail in chapter 3.

6 For some measures the value zero indicates maximal dissimilarity while increasing values indi-
cate increasing similarity. For others the role of the values are exactly the opposite, zero indicat-
ing maximal similarity and increasing values increasing dissimilarity. The latter ones, as Rahn
(1979-80:489) points out, are strictly speaking measures of dissimilarity. When analysing the mea-
sures we will not make this distinction separately, as it becomes evident from the context anyway.
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number. When discussing the s.i. measure proposed in Teitelbaum (1965), Lord
criticises it for offering results mostly in the form of irrational numbers, a con-
vention which he sees as lacking clarity and accessibility (1981:111 n 7).7 The val-
ues produced by the IcVSIM relation are almost always irrational numbers as
well, a feature Isaacson admits will undoubtedly trouble some readers (1990:19).

2.4.24 Criterion C3.4: A Reasonable Degree of Discrimination

If the values produced by a similarity measure are not integers, the number of
decimal places to which they are rounded must be decided at one point or an-
other. This, in turn, has a straight effect upon its degree of discrimination, or, us-
ing the optical term used by Rahn (1979-80), resolution. Discussion of this topic
does not occur in the literature. Writers either start by using a certain numbers of
decimal places right away (Rahn 1979-80, discussing the ak measure; Morris 1979-
80:450), or do not provide any examples and ignore the whole question (Rahn
1979-80, discussing ATMEMB; Lewin 1979-80b). A possible reason for this might
be that the writers did not have sufficient computer capacity at their disposal to
calculate all values, putting resolution concerns out of reach.

Two approaches seem to be naturally available for determining the accu-
racy to adopt. The first is the one adopted in Isaacson (1990) and (1992).8 The val-
ues are calculated with an accuracy that is simply fine enough to distinguish be-
tween extremely close but still non-identical values, no matter how fine the gra-
dation must be in order to achieve this.? This approach is valid, of course, as it in
a sense reveals the "true"” resolution of a measure. We disagree, however, with a
conclusion Isaacson seems to have drawn from this, a conclusion to which he
repeatedly refers but never clearly states: in order to be useful, a measure should

provide a "wide range of discrete values," "produce fine distinctions between
values" and "show fine gradations of similarity.” (1990:2, 19, 22). A measure can
provide only a handful of values and still be very good.

The other alternative, to be adopted in this study, is a more practical one.
All non-integer values will be rounded in a uniform manner, to two decimal

places. This means, for example, that if the extreme values produced by a mea-

7 In fact Teitelbaum uses square root notation, a convention which clearly meets C3.3.
8 Isaacson does not explain his strategy but it becomes clear from the context.

9 When Isaacson illustrates an aspect of Lewin's REL measure, he gives a group of values rounded to
eight decimal places, thus using a scale containing one hundred million grades (1992:164).
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sure are 0 and 1, the total number of grades on the scale 0, 0.01, 0.02,...1 is 101. It
may turn out, however, that many or perhaps even most of the grades do not
appear in the final value scale, as they are not values of any actual SC pair com-
parisons. The scale can be considerably coarser than the gradation would allow.

When adopting the latter alternative, we in fact reduced the resolution
some measures were capable of providing. We nevertheless believe that the pre-
sent resolution is fine enough. When a similarity measure is tested, it is most
important of all to identify potential inherent distortions and assess overall use-
fulness, not to show minute gradations of similarity that exceed the resolution of
the very tool with which the evaluation is done, i.e., intuition.10 Comparing in-
tuitive degrees of similarity to measured degrees of similarity may strongly sup-
port the validity of a given measure, but such comparisons certainly do not en-
courage us to take the resolution to extremes.11

When we come to evaluate the measures in chapter 3, we will provide the
number of distinct values which each one produces when examined at our
adopted accuracy. The numbers may differ from those given in Isaacson (1992)
due to the different accuracy and the fact that Isaacson examines value groups
#2-#10/#2-#10 while we examine value groups #2-#12/#2-#12. In most cases the
number of distinct values is above 30 and below 150. We will determine that all
measures fulfilling the distinct value criterion C2 also fulfill the meaningful de-
gree of discrimination criterion C3.4, with the sole exception of Rahn's TMEMB
measure. The number of distinct values it produces is 877.

The distinct value count will not be considered as an important indicator
of usefulness. On the contrary, we believe that if a measure is incapable of meet-
ing the value commensurability criterion C3.1, as many measures are, the count
is useless: one value can indicate many degrees of similarity, and one degree of
similarity can be indicated by many values.12 In these cases, only distinct value

10 1¢ does not seem very bold to assume that if a measure divides the distance between maximal
similarity and maximal dissimilarity into 8826 steps, its resolution surpasses our intuitive one.
8826 is the number of distinct values produced by Lewin's REL measure, as analysed by Isaacson in
(1992:122).

11 Given, for example, a scale from 0 to 1 with increasing values indicating increasing dissimilar-
ity, it is difficult to envisage circumstances under which we could draw meaningful analytical con-
clusions from the fact that SC pair X has the value 0.1001 and SC pair Y 0.1002. Or, we do not ex-
pect our intuition to confirm that SC pair A is two times as similar as SC pair B and three times as
similar as SC pair C, their values being n, 2n and 3n, respectively, etc.

12 Comparing the distinct value counts in these cases can be outright misleading. The k and SIM
measures, for example, are connected so that the k value of a SC pair can be calculated from its SIM
value and vice versa. (Section 3.4.1.1). The two measures have identical numbers of distinct values
in corresponding value groups. However, the total number of distinct values is 44 for SIM and 35 for
k. A given k value v, indicating many degrees of similarity in various k value groups, can corre-
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counts within individual value groups are of interest. Likewise, the average of
the value group #2-#12/#2-#12 is of importance only if the measure in question
meets criterion C3.1.

2.4.3 Criterion C4: A Uniform Value for Comparable Cases

This criterion states that a similarity measure should not be effected by SC prop-
erties other than those it professes to measure. If it adopts as its basis a certain as-
pect of similarity, it should produce the same value for all SC pairs whose type of
similarity is uniform from the point of view of the chosen aspect.

Let the comparison group #3/#3 be our test material in examining this cri-
terion. Many measures launch ICV comparisons by taking the differences be-
tween corresponding components. The basic principle is to associate increasingly
similar numbers of corresponding ic instances with increasing degrees of SC sim-
ilarity. The degrees are only expressed indirectly in a sense, since we record the
number of ic instances not in common: smaller differences mean closer similar-
ity. Other measures apply the same basic principle but approach it from the op-
posite direction, by recording the number of ic instances in common. For exam-
ple, since all triad classes contain three ic instances (the sum of components in
their ICVs is three), every SC pair in the comparison group #3/#3 falls into one
of just three categories. A given pair may have (a) no ic instances in common (b)
one ic instance in common (c) two ic instances in common.13

The SC pairs in each of these categories are examples of what we mean by
"comparable cases" in the definition of criterion C4. They are comparable both
with respect to their cardinalities and to the numbers of ic instances they have in
common. Consequently, if they are compared with a similarity measure that is
based on observing numbers of ic instances in common, no other aspect should
stand in the way of them getting identical results from it. A number of similarity
measures fail this rather obvious criterion, however. The methods used to calcu-
late the values take into account, perhaps inadvertently, aspects other than ic
contents as well. These measures require, at one stage or another, that differences
between corresponding vector components be squared. They have the unfortu-
nate tendency of treating vectors with similar-sized components differently from

spond not to just one, but to many SIM values.

13 The result is valid under Tn/I-classification. The number of ic instances in common between two
SCs is given as their k number. The concept is from Morris (1979-80:448) and will be examined in de-
tail later.
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those with highly different components. Not one of the theorists proposing a
measure with this property has identified this inherent defect.

Let us suppose we have two pairs of SCs, {X,Y} and {Z,W} which are com-
parable in the sense described above. The ic instances in ICV(X) and ICV(Y) are
evenly distributed. ICV(Z) and ICV(W), by contrast, have what we will call
peaked ic distributions, the peaks being located in different indexes. When we
take the differences between the corresponding components, ICV(X) and ICV(Y)
produce small differences and relatively small squared differences. But when
ICV(Z) and ICV(W) are compared, the peaks do not "neutralize" each other, re-
sulting in large differences and even considerably larger squared differences.
Whatever further processing we do to these two sets of squared differences, the
disproportionately large elements in the latter cause the similarity measure to
not produce uniform values for {X,Y} and {Z,W}.

Measures with this feature are meant to be based on the extents of shared
instances in two ic contents, but they end up being based on another notion as
well, i.e., whether the non-shared instances are evenly distributed or in "piles."
From the point of view of ic content similarity the latter aspect is not only irrel-
evant but outright distorting. Sensitivity to the non-shared instance distribution
introduces an artificial element to the comparison. The IcVSIM value group
#3/#3, for example, contains 7 distinct values, despite the already mentioned fact
that, from the point of view of numbers of ic instances in common, triad class
pairs compared under Tn/I-classification can differ only in three ways.

Let us compare two pairs of SCs, {3-1,3-9} and {3-7,3-8}. The ICVs are given
in Ex. 2.1.

EXAMPLE 2.1: Interval-class vectors of four 3-pc classes.

ICV(3-1) = [2 100 0 0]
ICV(3-9) = [0 1 0 0 2 0]
ICV(3-7) = [01 101 0]
ICV(3-8) = [0 1 01 0 1]

The classes in both pairs share one instance of ic2. It is difficult to see how one
could claim that, from the point of view of ic contents, the {3-1,3-9} pair repre-
sents a higher degree of dissimilarity than the {3-7,3-8} pair does. Yet several sim-
ilarity measures sensitive to the non-shared instance distribution suggest it does.
The reason is that both ICV(3-1) and ICV(3-9) contain a "peak” in the form of a
component 2, whereas all nonzero components in ICV(3-7) and ICV(3-8) are of
value 1. It is possible to defend the peakedness-sensitive measures by saying that
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they utilize widely applied mathematical concepts, such as the standard devia-
tion function in IcVSIM. We disagree with this view. Such a concept has no
guaranteed musical validity and cannot be used as an excuse if a measure pro-
duces counterintuitive results.

244 Criterion C5: Observe Mutually Embeddable Subset-classes of
All Meaningful Cardinalities

Here we call for the expansion of the subset-class materials participating in the
comparisons. The expression "all meaningful cardinalities" is an intentionally
ambiguous one, since participating subset-class cardinalities may be selected dif-
ferently in different measures. For example, a measure may or may not take ad-
vantage of the fact that a SC is its own subset-class.

The reasons for comparing all mutually embeddable subset-classes and not
just dyad classes (ics) are obvious. First, in a very general sense, the more points
of reference we have between the SCs to be compared, the more accurately we
can hope to demonstrate structural similarities or differences between them. As
we identify some properties of a SC with the help of its ICV, it does not seem
counterintuitive to assume that we could identify some of its other properties
with its other vectors. Second, we want to discriminate between inversionally re-
lated and Z-related SCs. They are identical from the point of view of ic content-
based similarity measures.

When observing some collection of elements together with its all subcol-
lections, one could intuit that the largest subcollections preserve more of its sub-
stance and structure than small ones and are therefore of greater interest. There
is, for example, an immediate sense of similarity between some 9-element chord
and its nine 8-element subchords. A counterargument exists as well, however,
which prevents us from establishing a simple correlation between the cardinality
of a subcollection and its importance. It is articulated by Morris as he argues that
intervals and ics are the backbone of our audition. In his opinion large shared
subset-classes influence auditory comparisons of SCs as well, but it can be sus-
pected that they might become too large and produce too fine a measure for us to
hear (1979-80:458 n 14).14 It seems he may have changed his mind to a certain ex-

14 Despite the fact that Morris's own SIM relation compares ICVs only, he refers to entire subset-
class contents when discussing similarity relations in general. For instance he criticises a relation
for deeming SC pairs {6-1,6-32} and {6-1,6-2} equally similar, although the latter pair seems a lot
closer "from the point of view of shared included sub-sets" (Morris 1979-80:456 1 3).
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tent later on, however. In (1987:105) he is in agreement with Forte, the latter sug-
gesting that ic and pc inclusion are together effective indicators of similarity.
Forte, when discussing his compound relations,15 states that maximum similar-
ity with respect to both pitch class and interval class will be regarded as more sig-
nificant than pitch class similarity alone or interval class similarity alone
(1973a:50. Emphasis Forte's). To get from his discussion to ours, we just replace
interval-classes and pitch-classes with the single notion of subset-class, and allow
all categories of these to contribute to similarity assessments.

2.4.5 Criterion C6: Observe Non-Shared Mutually Embeddable Subset-classes

The notion giving rise to the sixth criterion is formulated by Hoover as follows:
the relationships based on similarity do not in any way account for those ele-
ments of a pcset not involved in the common-tone tally or the shared subset
search (1984:171).

At first glance, C6 may seem to be a bit out of place in our criteria. If we are
assessing the degree of similarity between two SCs with the help of their mutu-
ally embedded subset-classes, their unilaterally embedded subset-classes would
appear to be the ones which provide the dissimilarity. This is not entirely so,
however. As we compare many pairs of SCs, there is no way we can assume that
the relationship between the non-shared subset-class materials is a constant from
case to case. That is, we cannot automatically equate non-shared with completely
dissimilar.

Suppose we have two septad classes, 7-X and 7-Y. When comparing the
two, our intuitive starting point is probably something like this: 7-X and 7-Y are
different objects, but there is a degree of similarity between them. In order to de-
termine the degree, we decide to compare their entire subset-class contents. The
first step is to determine their subset-classes of cardinality six. Let the hexad
classes included in 7-X be instances of 6-A, 6-C and 6-E, and the hexad classes in-
cluded in 7-Y instances of 6-A, 6-B and 6-D.16

The only shared subset-class is 6-A. The unilaterally embedded classes are
6-C and 6-E in 7-X, and 6-B and 6-D in 7-Y. It would appear, then, that the hexad
class contents of 7-X and 7-Y are rather different. And indeed they could be, as we

15 Combinations of Forte’s individual similarity relations. See section 3.5.5.

16 The number of instances of hexad classes included in a septad class is seven. We do not need to de-
termine specifically how many instances of each hexad class are embedded in the superset-class,
but let us assume that the hexad classes are represented approximately evenly.
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could deem 6-C and 6-E strongly dissimilar to 6-B and 6-D. But this is not by any
means the only possibility, as we could also deem 6-C and 6-E strongly similar to
6-B and 6-D. Suppose, for example, that all four classes are some "near-chro-
matic" hexad classes with a strong sense of similarity between them. Or, under
Tn-classification, we could even find out that both classes in the {6-C,6-E} pair
have their inversionally related classes in the {6-B,6-D} pair.

We could ignore the meaning of the potentially high degree of similarity
between these two pairs of hexad classes for an obvious reason. They are not mu-
tually embedded. But in a sense it would be illogical to do so: when relating the
two septad classes we saw that they are different objects with a degree of similar-
ity. And now, when relating hexad classes, we would deny the importance of the
very same principle only because we are dealing with subset-classes. The classes
in the pair {6-B,6-C}, for example, are different objects with a degree of similarity
as well, and that degree has an effect on the degree of similarity between 7-X and
7-Y. If we do not somehow take into account the unilaterally embedded classes,
we are about to design a similarity measure that equates non-shared with totally
dissimilar. We believe that it is a mistake to do so.

Observing mutually embedded subset-classes is only the first step in com-
paring two 5Cs. It amounts to registering the extent to which two subset-class
contents consist of same elements. After this, we have to (a) assess the degree of
similarity between the two groups of unilaterally embedded subset-classes, and
(b) relate this degree to the first one produced by the mutually embedded classes.
The final result, hopefully, corresponds more truthfully to the degree of similar-
ity between 7-X and 7-Y than the shared subset-class count alone. There is no sin-
gle definitive way to take and combine these steps, of course, but RECREL will of-
fer one alternative.

It is evident that the sixth criterion is of relevance only for similarity mea-
sures comparing entire subset-class contents. When comparing ic contents, there
is no meaningful way to do any further processing to the unilaterally embedded
materials.17 Unintentionally taking the unilaterally embedded instances into ac-
count, as measures which square component differences do, is not the same
thing as fulfilling Cé.

17 We can, of course, envisage some methods of relating also the unilaterally embedded ic materi-
als, for example by weighting each ic instance with some factor reflecting a degree of dissonance,
etc. Approaches like these, however, are outside the scope of the present study.
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2.5 STATUS OF DIFFERENT SUBSET-CLASS CARDINALITIES

If a similarity measure utilizes subset-classes of all cardinalities and thus fulfills
criterion C5, two further notions immediately suggest themselves. The first is
how the measure processes the subset-classes: either as one large entity, or with
the different cardinalities as separate entities.

Suppose we compare two 9-pc SCs with a measure belonging to the former
category.18 There are 9 instances of 8-pc classes embedded in both nonad classes,
against 126 pentad class and 126 tetrad class instances. As the measure gives an
equal footing to every subset-class instance regardless of its cardinality, it seems
obvious that the octad class instances are too few to affect the outcome very
much, even if their contribution points strongly to similarity or dissimilarity.
Such a measure has a built-in tendency to emphasize the subset-class cardinali-
ties with the largest numbers of instances.19 Other measures, like RECREL and
its earlier version, T%REL, adopted the alternative approach. The argument goes
that because we cannot demonstrate that a given subset-class cardinality is inher-
ently more important than the others, we examine them separately and give an
equal share for each partial result.

The other notion of central importance for criterion C5 is whether subset-
classes of different cardinalities reflect similarity in a consistent manner.20
Suppose, for example, that we examine some SCs X and Y by performing pair-
wise comparisons to their 2CVs, 3CVs, 4CVs, etc., up to as high a subset-class car-
dinality as the current SCs allow. If the measure we use suggests that 2CV(X) and
2CV(Y) are highly similar, do we expect that 3CV(X) and 3CV(Y), 4CV(X) and
4CV(Y), etc., will be highly similar, too? Or, despite the dyad class similarity,
could other vector comparisons indicate high dissimilarity? If so, which one of
the results is to be trusted?

Let us start our analysis by observing the highly different numbers of SCs
in the different cardinality-classes. The number of dyad classes, for example, is
six, the number of hexad classes under Tn-classification 80. As the number of
cardinality-class members equals the number of indexes in the corresponding n-
class vector, the different values for n indicate vectors of radically different

18 The category includes three measures we will examine in chapter three, TMEMB, ATMEMB and
REL.

19 This is not to suggest that we contest the validity of the measures with this feature. Some of
them have obvious merits.

20 1saacson discusses related topics in (1992:99-106).
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lengths.21

From the point of view of nonzero components, some vectors can be a lot
more "sparse” than others. For example, the sum of components in a 6-class vec-
tor of a septad class is just 7, meaning that more than 90% of the 80 components
are zeros. As the 6CVs of all septad classes are level in this manner, they appear
to be highly similar: for a given component 0 in a given 6CV, the corresponding
component in another 6CV is in all likelihood also 0.22 The resemblance is evi-
dent, but concluding SC similarity from this would be a serious mistake: the con-
tours of the vectors are similar, not the subset-class contents of the septad classes.
Corresponding zero components are at best only indirect indicators of similarity,
revealing what is mutually excluded. Only nonzero components participate in
describing the subset-class contents of a SC, and, consequently, their status is
completely different from that of the zero components. A measure comparing
vectors must be designed with this in mind.23

It would seem that it is more improbable to find similar distributions of
nonzero components in two "sparse” vectors than in two "dense" ones, the lat-
ter referring to vectors containing mostly or solely nonzero components. In
other words, we might suspect that the 6CVs of septad classes are on average
more dissimilar than their 2CVs. This is indeed so. Vectors in some categories
are inherently more different than those in others, an observation of importance
for the total measures.

Let us briefly examine this by analysing concrete results. Four comparison
groups, #7/#7, #8/#8, #9/#9 and #10/#10, were selected as test materials. Each
SC pair in each group was compared twice with the %RELpn measure, first with
%REL2, comparing 2-class vectors, then with %RELg, comparing 6-class vec-
tors.24

21 Under Tp-classification, to be used in the present discussion, the numbers of SCs in the cardinal-
ity-classes, and, accordingly, the numbers of indexes in the corresponding vectors, are as follows:
2-pc SCs: 6; 3-pe SCs: 19; 4-pc SCs: 43; 5-pc SCs: 66; 6-pc SCs: 80; 7-pc SCs: 66; 8-pc SCs: 43; 9-pc SCs:
19; 10-pc SCs: 6; 11-pc SCs: 1; 12-pc 5Cs: 1.

22 For discussion on a probabilistic approach to subset-class contents, see Lewin (1977) and (1979-
80a).

23 Even if a zero component indicates "is not represented" or "does not participate in the subset-
class contents,” it can still be informative, at least in a short vector. For example, the number of
dyad classes is so limited that each of them represents something concrete in the mind of the ob-
server. One glance at a dyad class vector reveals both what is present and what is absent.

24 4 RELp compares proportional subset-class distributions. Given some SCs X and Y, the %REL3
value 10 would indicate that only 10% of the triad class instances in X cannot be paired with coun-
terpart instances in Y, and vice versa. This suggests a high degree of similarity. (Reversely, 90% of
the two triad class contents correspond). Value 0 would mean that the distributions are identical.
See Definitions entry "%RELp" and section 3.4.2 for more details.
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In the %REL2 value group #7/#7, the average is 12. As the similarity-dissimilar-
ity continuum ranges from 0 to 100, this figure suggests that on average, the pro-
portional dyad class distributions of septad classes are quite similar.2> In the
%RELg value group #7/#7, by contrast, the average value is an extremely high
93. In most cases, the hexad class contents of two septad classes have very little in
common. Even the lowest individual figure in this value group is as high as 43.
The SCs with this value, 7-31A and 7-31B, have four inversionally symmetric
hexad classes, 6-Z13, 6-723, 6-Z49 and 6-Z50, mutually embedded in them.

When the comparison group cardinalities increase, the averages of the
%REL?2 and %RELg value groups decrease. For comparison group #8/#8, the
%REL) average is 8, the %RELg average 72. For the comparison group #9/#9, the
corresponding figures are 5 and 40, for the comparison group #10/#10, 2 and 20.

Results like these show that different n-class vectors can indeed reflect
similarity between two SCs very differently.26 This could be seen as an observa-
tion calling into question the validity of the total measures: we may intuitively
deem two SCs highly similar, but comparisons between their certain nCVs may
suggest high dissimilarity instead.

Let us examine this in closer detail with a concrete example. The SCs to be
compared are the inversionally related 5-pc classes 5-Z18A and 5-Z18B. Their
prime forms are {0,1/4,5,7] and {0,2,3,6,7}, respectively. The 4-pc classes embedded
in them are as follows:

EXAMPLE 2.2: The 4-pc subset-classes of 5-Z18A and 5-Z18B.

5-718A: 4-7, 4-12B, 4-14B, 4-16A, 4-18A
5-718B: 4-7, 4-12A, 4-14A, 4-16B, 4-18B

Only one of the subset-classes, 4-7, is embedded in both pentad classes.
%REL4(5-Z18A,5-Z18B) = 80. The value points strongly to dissimilarity, a suspi-
cious result considering the strong intuitive closeness between 5-Z18A and
5-Z18B. '

It is exactly here that we see in a very concrete manner how criterion C5,
telling us to compare all mutually embeddable subset-classes, and criterion C6,
telling us to observe also the unilaterally embedded subset-classes, are connected.

25 Inversionally related classes produce always the minimum value 0. As a result, the average is
slightly lower than it is under Tn/I-classification. In this value group, the maximum is 29.

26 The results are only a few examples from extensive comparisons between different %RELp, value
group averages. Detailed descriptions of these comparisons or their results are not presented here,
as they would not add anything new to the already evident conclusion.
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The former produces counterintuitive results without the latter. When we ex-
amine the two groups of unilaterally embedded 4-pc SCs in Ex. 2.2, we see that
each class in one group has its inversional counterpart in the other. This obser-
vation instantly links the two groups much closer together. Furthermore, some
other cross-related 5C pairs have a high degree of similarity between them as
well. For example, comparing the pairs {4-12B,4-18B} and {4-14B,4-16B} with
%REL? produces instances of the value 17, which is the second lowest one in the
entire value group #4/#4 for this measure. The lowest, 0, is produced by inver-
sionally related and Z-related classes. The two groups of unilaterally embedded
tetrad classes, seeming at first to contribute to dissimilarity only, turn out to be
closely related after all. The tetrad class distributions do correlate with the intu-
itively experienced similarity between 5-Z18A and 5-Z18B.27

2.6 SIMILARITY RELATIONS AND SET-CLASSIFICATIONS

There are no evident guidelines governing the relations between a similarity re-
lation and a set-classification. A given type of set-classification is not inherently
better or worse than any other, its validity depending only on how well its gen-
erality or particularity fulfils the needs of a given task.28 In fact, even the order
between a similarity relation and a set-classification is not by any means deter-
mined. We may set our minds on a given classification and start looking for a re-
lation most suitable for it. Or we may set our minds on a certain type of similar-
ity relation and start looking for a classification most suitable for it.

Still, the relation between a relation and a classification is of importance.
Once the classification is chosen, the universe of the objects to be compared is de-
termined. A whole category of comparisons that is perhaps of special interest
under one classification may not even exist under another.2 Prior to selecting a
classification, theoretical observations cannot point objectively to a given alter-
native as they can be interpreted in exactly opposite ways. The starting point can
be, for example, the fact that the ic contents of a pcset are preserved under inver-
sion. For the Tn/I-minded this is the very argument supporting inclusion of in-

27 At this point we will not process the pentad classes or the two groups of unilaterally embedded
tetrad classes any further. The way to get a final RECREL value out of many intermediate %RELp
values will be described in Chapter 4.

28 For a general discussion on set-classifications, see, for example, Morris (1982) and (1987:78-84).

29 The Z-related pairs, for example, can be compared under Tp/I-classification but not under the one
provided in Forte (1964). In the latter, each Z-pair comprises a single SC.
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version in the group of transformations defining a set-class. For the theorist in-
clined to Tp-classification it merely suggests that non-equivalent objects can
share important characteristics.

Tn /I-classification is by far the most widely used type, providing the
framework under which practically all similarity relations are discussed.
Exceptions are relatively few (Regener 1974, Solomon 1982, Rahn 1989). RECREL
will be used under Tp-classification. We want inversionally related SCs to be in-
dependent objects for the simple reason that we experience them to be different.
More important still, we experience that the degree of similarity between pairs of
inversionally related classes is not a constant. Some inversionally related SCs
may give the impression of being extremely close to each other, while others can
seem more distant. RECREL was designed with these observations in mind. It, as
well as some other measures to be examined, produces values supporting these
observations.




W CHAPTER 3
EVALUATING SIMILARITY RELATIONS

3.1 INTRODUCTION

In this chapter we shall evaluate a number of previously presented similarity rela-
tions, using the criteria we defined in the previous chapter. RECREL will be intro-
duced and analysed separately in following chapters. Some preliminary discussion
will precede the actual evaluations. First, in section 3.2, we examine different possi-
bilities in categorizing the relations. In section 3.3 we discuss a number of notions
relevant to the evaluations. Among these are the order in which the relations are to
be examined, conventions concerning formal notations, etc.

3.2 ONE-TO-ONE AND ONE-TO-MANY CORRESPONDENCE

In the previous chapters, we have already identified a few categories that a vector-
based similarity relation can represent. It can be a "plain” similarity relation not pro-
ducing numeric values, a similarity measure comparing one subset-class cardinality
at a time, or a total measure comparing entire subset-class contents. We will examine
two more categories needed during the evaluations. They apply to the similarity
measures only. This time, the decisive factor is not the number of compared subset-
class cardinalities. Instead, we examine how the subset-class instances in one SC are
paired with those in another, by one-to-one or one-to-many correspondence.l To refer

1 The notion of pairing by one-to-one correspondence is from Rahn (1979-80:489).

33
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to the two categories we will use terms such as "measures based on one-to-one cor-
respondence,” and "one-to-many correspondence measures."

The two concepts are illustrated in Diagram 3.1. Let X and Y be two SCs and
the squares, circles and triangles in them instances of three subset-classes. The same
SC pair is given twice. (a) illustrates one-to-one correspondence, (b) one-to-many
correspondence.

DIAGRAM 3.1.

(a) one-to-one correspondence (b) one-to-many correspondence

X

[-":HJ (nmr o9 4 |
/X \
(- ® e AJ ¥ 4 AX]

Y Y

In (a) we identify a subset-class instance in X and assign an instance of the same
class to it from Y. The crucial point is that after being paired, the two instances do
not participate in the measurement any more. We repeat this until each instance in X
having a free counterpart in Y has been paired with it. From the number of instances
without counterparts we can then infer the extent of deviation from the ideal, the
pairing of all instances. From the point of view of the non-paired X-square and Y-
triangle, it does not matter at all whether or not the other SC contains any squares or
triangles. They are surplus instances anyway. All measures taking the differences
between corresponding vector components are examples of one-to-one correspon-
dence measures.

Pairs of corresponding instances are formed also in (b). This time, however,
the instance pairs are not distinct. Assigning a counterpart for a Y-square, for ex-
ample, does not prevent it from being paired with the two other X-squares as well.
In this approach we assume that each pair stands out independently, contributing
something to similarity. The fact that the sole X-triangle is paired with the Y-triangle
to the left does not mean that it ceases to exist from the point of view of the Y-trian-
gle to the right. The latter pairing indicates "triangle similarity” just as well.
Measures taking the products of corresponding vector components are examples of
one-to-many correspondence measures.

It is not possible to analyse the descriptive powers of the two approaches
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without examining SC pairs with measures from both categories and comparing the
results. This, in turn, has to wait until the measures have been properly discussed.
Some general observations can be made, however. The one-to-many correspondence
measures equate an increasing number of pairings with increasing similarity with-
out paying attention to how the pairs are brought about. If in Diagram 3.1 (b) X had
one triangle and Y nine, or if both X and Y had three, the result would be the same.
This approach is in a sense an atomistic one, not relying on resemblances between
instance distributions in X and Y, but on large numbers of individual tokens of simi-
larity. For the one-to-one correspondence measures, where the criterion of similarity
is similar amounts of similar elements, distributional resemblance is the main point.

3.3 ABOUT THE EVALUATIONS

The similarity relations will be grouped so that related constructs are adjacent. There
are three categories, given in an order that in our opinion reflects increasing de-
scriptive powers: (1) "plain” similarity relations not producing values, (2) measures
processing one subset-class cardinality at a time, (3) total measures. The one-to-one
/ one-to-many correspondence categorization, then, is not going to be used as a ba-
sis for grouping the relations.

There will be one exception from this strength category grouping, however.
Two measures belonging to the second category, %RELnp and the k measure, will be
presented first. (Section 3.4). The reason for this is purely practical. We will often use
the two as points of reference when discussing other measures, and it would be in-
convenient to refer constantly to concepts not yet introduced.

The first category contains similarity relations by Forte, Alphonce and
Solomon. (Section 3.5). The second contains measures by Teitelbaum, Morris, Lord,
Isaacson, Rogers and Rahn (section 3.6), and the third the total measures by Rahn,
Lewin and Castrén. (Section 3.7). Within each category, the order is chronological,
again with an exception. In the second category, Rahn's ak and MEMBy, will be ex-
amined last since they and the two expanded versions of the latter, TMEMB and
ATMEMB, were originally presented together. TMEMB and ATMEMB will be the
first total measures in the third category, and it is convenient to introduce their basic
principles using the most straightforward version, MEMB,.

Each similarity relation will be examined in its original context. For example,
if a relation was introduced using Tn, /I-classification, we will use that classification
as well. If a given relation was meant to relate SCs of the same cardinality only, we
will not use it to compare SCs of different cardinalities, and so on. Applying the total
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subset-class contents criterion C5 and the non-common subset-class criterion C6 to
relations which compare only one subset-class cardinality at a time is something of a
borderline case. On the one hand, some theorists have expressly stated that their
measures were meant to process only limited materials, like ic contents. Applying
C5 and C6 would then mean examining the measures outside their original context.
On the other hand, we evaluate and compare theoretical constructs, not the opinions
behind them. We want the evaluations to reflect our conviction that entire subset-
class contents are better indicators of SC similarity than ic contents. Therefore, C5
and C6 will be applied to every relation.

If a measure allows comparisons between SCs of different cardinalities, the
entire value group #2-#12/#2-#12 is obtained in order to calculate minima, maxima,
averages and numbers of distinct values. Under Tn/I-classification, this value group
contains 24,531 values. Minimum, maximum and average values and numbers of
distinct values are also calculated separately for each value group #n/#m, 3 <nm <
9. The results are given in the 16 value group information tables.

For the sake of consistency we will adopt some representational conventions.
At times, then, our expressions and notations can differ from those given by writers
discussing their own relations. For instance, the original source might illustrate a
measure with the help of pcsets, while we will do this with the help of SCs. Some of
our conventions will follow those in Isaacson (1990). Let X and Y be two SCs, ICV(X)
and ICV(Y) their interval-class vectors, respectively, and xj and yj the components in
index i in ICV(X) and ICV(Y), respectively. The expression #ICV(X) indicates the
sum of components in ICV(X) and #nCV(X) the sum of components in the n-class
vector of X. XC and Y are the complement classes of X and Y, respectively. X and
I(X) are inversionally related classes. The function MIN returns the smaller of two

numbers.
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3.4 TWO REFERENCE MEASURES
3.4.1 Morris: The K Measure

Presented in Morris (1979-80:448). A similarity measure pairing interval-class in-
stances by one-to-one correspondence.2

COMPARISON PROCEDURE:
The smaller components in each pair of corresponding ICV components are added

together.

EQUATION:3
Given SCs X and Y and the function MIN,

k(X,Y) = i MIN(x; — vy)
i=1

EXAMPLE 3.1: k(5-1,5-16).%

k(5-1,5-16) = 2+1+2+1+0+0 =6

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.3,C34, C4.

THE K MEASURE VALUE GROUP #2-#12/#2-#12: 5

All values are integers. Value indicating highest degree of similarity: 55. Value indi-
cating highest degree of dissimilarity: 0. Average: 10. Number of distinct values: 35.
k(X,Y) may or may not be k(XC,YC)

2 Morris does not give k as a similarity measure. The use as such was suggested in Rahn (1979-80).
The term measure in connection with k was adopted for the purposes of this study.

3 The k equation Morris gives in (1979-80) is entirely different from the one given here. Morris de-
rives k values from those produced by the SIM measure. We define k as an independent measure.
The equation is from Isaacson (1992:42).

4 The example is from Rahn (1979-80).

5 As the measure does not meet the value commensurability criterion C3.1, this information is of lim-
ited importance.
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TABLE 3.1: The k measure value groups #n/#m, 3 <n,m < 9. Within a given value group, higher val -
ues indicate higher degrees of similarity. Each table cell contains, clockwise from the top left: the
lowest and highest values, the number of distinct values, the average.

#3
0 2
#3195 3 #4
0 3 |1 3
¥ 91 4 |3.31 6 #5
ss|L 3 |2 6 |4 10
2.6 3 |48 5 |7.3 7 #6
well 3 |2 6 |2 10 |6 15
2.86 3 |s.e 5 |s.98 6 |11.95 10 47
2 3 |4 e |7 10 |9 15 (15 21
3.0 1 |s.95 3 |s.e5 4 |14.156 [18.3 7 48
N 3 |6 e [0 1o [11_ 15 {17 21 |23 28
3.0 1 l6.0 1 lto.0 1 lia.9 5 |20.565 |25.316 #9
W 3 |6 6 110 10 {15 15 |2t 21 |25 28 |33 35
3.0 1 6.0 1 100 1 |15.0 1 l21.0 1 |27.784 |33.95 3

34.1.1 Analysis

The k measure counts numbers of ic instances embedded mutually in two SCs. Itis a
sort of opposite of the SIM measure, presented also in Morris (1979-80). The latter
counts numbers of unilaterally embedded ic instances. (Section 3.6.2). Morris did not
give k as a way of assessing the degree of similarity between SCs. This function was
adopted by Rahn, who deems k superior to SIM (Rahn 1979-80:488-9). The two mea-
sures are closely connected, as k values can be calculated from known SIM values,
and vice versa. Given SCs X and Y and the sums of their ICV components #ICV(X)
and #ICV(Y), respectively, © ‘

(1) KOGY) = HICV(X) + #ICV(Y) - SIM(X,Y))/2.
(2) SIM(X,Y) = (#ICV(X) + #ICV(Y) - 2k(X,Y)).

Given SCs X and Y of cardinalities n and m, respectively, the maximum value in the
value group #n/#m is usually the smaller of #ICV(X) and #ICV(Y) (Rahn 1979 -
80:489). However, if n = m and there are no Z-related SCs in the cardinality-class,
this maximum value can occur only if X = Y. As our value group information tables
are compiled so that a SC is never compared to itself, the X =Y values do not con-
tribute to Table 3.1. In value groups #3/#3 and #9/#9, the maximum value is
#ICV(X)-1.

6 (1) is from (Morris 1979-80:448). (2) is from (Rahn 1979-80:489).
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The k measure will be used in this study to identify comparable cases when assess-
ing the relation between a measure and the criterion C4. To make the values more
informative, we will modify the notation slightly and associate each value with the
maximum value in the corresponding value group. We will write k(X,Y) = n(m),
where n is the number of mutually embedded ic instances between X and Y, m the
maximum value. For example, k(6-1,6-32) = 11(15) indicates that the number of mu-
tually embedded ic instances between the hexad classes is 11, and that the maximum
value in the k value group #6/#6 is 15 (between Z-related classes). Likewise, the k
value in example 3.1 is renotated 6(10).

Among the criteria which k fails to meet is the value commensurability crite-
rion C3.1. As the scale of values is not the same for all value groups, a given value v
can indicate many different degrees of similarity. For example, in all value groups
#3/#m, 4 < m < 9, the value indicating the highest degree of similarity is 3. Along
the lines of the discussion in section 2.4.2.1, we deem these values incomparable.

Table 3.1 shows that k offers a poor degree of discrimination for a number of
value groups. The measure suggests, for example, that all nonad classes are equally
similar to all hexad classes (value 15). Also the value group #9/#7 consists of in -
stances of only one value, 21. As k and SIM values were seen to be closely corre-
lated, it is not surprising that a uniform-valued value group for k means a uniform-
valued value group also for SIM. In fact, the number of distinct values is always the
same in corresponding k and SIM value groups. (Value group information tables 3.1
and 3.4).

Due to the correlation between k and SIM, other important aspects of their
descriptive powers also correspond and can be examined together. This will be done
in connection with SIM, in section 3.6.2.2. The reason for postponing the analysis at
this stage is that we will identify aspects of SIM with the help of yet another similar-
ity measure, %RELp. The two measures are based on highly similar comparison
methods. We will then examine how the results of the SIM analysis can be applied
tok.

3.4.2 Castrén: %RELn

Percentage Relation. A modification of Lord's sf measure. Presented in an unpub-
lished manuscript (1990). A similarity measure comparing proportionate subset-
class contents, one subset-class cardinality at a time. A one-to-one correspondence

measure.
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COMPARISON PROCEDURE:
The sum of the absolute values of the differences between corresponding compo-
nents in two n-class %-vectors is divided by two. The value is rounded to the nearest

integer.

EQUATION:
Given SCs X and Y, their n-class %-vectors nC%V(X) and nC%V(Y) of length p, and
components xj and yj in the index i of the vectors,

) &4
2 lXi Y
o/oRELn(X,Y) = i=1 5

EXAMPLE 3.2: %REL2(6-1,6-Z4). Prime forms, 2CVs and 2C%Vs.”

0,1,2,3,4,5), [543 21 0], [33 27 20 13 7 0]
0,1,2,4,5,6}, [4 3 23 2 1], [27 20 13 20 13 7]
%REL(6-1,6-Z4)=

[33-27[+]27-20]+]20-13|+[13-20]+]|7-13]|+]0-7} = 6+7+7+7+6+7 = 20
2 2

EXAMPLE 3.3: %REL3(6-1,6-Z4). 3CVs and 3C%Vs.

3CV(6-1) =[46420
2

6 200000),3C%V(6-1) =[20302010 0 10 10
3CV(6-Z4)=[224 4 2

2 0000]
2 000],3C%V(6-24)=(10 10 20 20 10 10 10 10 0 0 0 Q]

%REL3(6-1,6-Z4)=

[20—10|+|30—10|+120-20|+|10-20|+|0—10|+|10—10|+|10—10|+|0—10L
2

= 10+20+0+10+10+0+0+10 = 30
2

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C3.3,C34, C4.

THE %REL2 VALUE GROUP #2-#12/#2-#12:

All values are integers. Value indicating highest degree of similarity: 0. Value indi-
cating highest degree of dissimilarity: 100. Average: 30. Number of distinct values:
85. %REL2(X,Y) may or may not be %REL2(XC,YC).

7 %REL 1, will be examined under T, /I-classification. As all n-class vectors are now involved, we will
use the term 2CV instead of ICV.
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TABLE 3.2: The %REL> value groups #n/#m, 3 <n,m < 9. Lower values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average. C = 100.

43
33 C
#3l6g 35 3 #4
0 c |0 83
#sg g4 7 |aa.8 6 #5
4s/l3 90 (10 80 [0 60
57.12 15 |38.85 20 [27.0 7 #6
4|13 87 10 80 [0 60 |0 60
57.02 12 |36.61 20 [24.63 18 |20.33 10 #7
47|25 86 |7 76 |4 57 |4 57 [0 29
56.81 13 [34.5 26 |21.72 32 [17.65 38 [13.01 7 48
4|36 86 |6 75 |6 57 |4 57 [0 25 [0 18
56.8 15 [33.45 42 [21.05 38 [16.63 35 [11.87 21 [9.66 6 #9
4o|22 83 [6 75 (7 56 [5 56 |4 27 |4 18 |3 )
56.75 14 |32.23 23 [20.0 32 [15.91 29 [10.58 19 |8.59 13 |5.94 3

3.421 Analysis

Although %RELn was originally designed to be an independent similarity measure,
its main function is to be an integral part of RECREL. It is an internal measure of
similarity in the latter, evaluated hundreds or even thousands of times during a sin-
gle RECREL comparison between two SCs of large cardinalities.

%RELp, unlike Lord's Similarity Function, from which it is derived, is not re-
stricted to comparisons between SCs of the same cardinality. Nor is it restricted to
comparisons between dyad classes only. Any two n-class vectors belonging to some
SCs X and Y can be transformed into n-class %-vectors. nC%V(X) and nC%V(Y),
then, give the proportionate n-class contents of X and Y, respectively, and the corre-
sponding %RELp, value give the degree of dissimilarity between those contents.

E.g. the lowest value, 0, is produced by %REL2 comparisons between Z-re-
lated SCs, between inversionally related SCs under Tn-classification, and between
SCs having different 2CVs but identical 2C%Vs. E.g. %REL2(6-35,5-33) = 0, meaning
that the proportionate dyad class contents are identical. The 2CVs and 2C%Vs are
given in Ex. 3.4.
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EXAMPLE 3.4: 2-class vectors and 2-class %-vectors of 6-35 and 5-33.

2Cv(6-35)
2CV (5-33)

[0 40 O 40 0 20]

[0 6 0 6 03], 2C%V(6-35)
[0 4 0 4 2], [0 40 0 40 O 20]

2C%V(5-33)

Among the few other set-class pairs whose %REL? value is 0, one finds {3-10,4-28},
{3-8,4-25}, {3-5,4-9}, {5-21,6-20} and {7-31,8-28}. One of the SCs in these pairs pro-
duces exactly the same %REL2 values with the rest of the classes as its counterpart

does.
The highest %RELn, value, 100, indicates that the two SCs being compared do
not share any subset-classes of cardinality n. For example %REL2(4-9,3-6) = 100. The

vectors are in Ex. 3.5.
EXAMPLE 3.5: 2-class vectors and 2-class %-vectors of 4-9 and 3-6.

2CV(4-9)
2CV (3-6)

[33 00 0 33 33]

2 2], 2C%V(4-9)
0 01, [0 67 0 33 0 0]

2C%V(3-6)

00
01

[2 O
[0 2

As %RELp, compares only one cardinality-class at a time, it does not meet the total
subset-class contents criterion C5. Nor does it meet the non-common subset-class
criterion C6. When n exceeds 2, %RELp can toa certain extent discriminate between
inversionally related SCs under Tn-classification. Given an inversionally non-sym-
metric SC X, in most cases %RELn(X,I(X)) > 0 when n > 2. The outcome is not cer-
tain, however. For example, %REL3(6-14A,6-14B) = 0. The 3-class %-vectors of the
two SCs are identical. Ex. 3.6.

EXAMPLE 3.6: 3C%V(6-14A) = 3C%V(6-14B).

[555 10 10 10 10 0 05550050 10 10 5]

Perhaps the main advantage in comparing proportional subset-class distributions is
that we get an intuitively satisfactory gradation of similarity in cases that are equally
similar from the point of view of absolute subset-class distributions, as described by
the n-class vectors. Again, we have to postpone a more detailed analysis until a suit-
able point of reference, the SIM measure, has been presented. %RELp and SIM are
compared in section 3.6.2.2.

Oddly enough, the proportional distributions also cause a problem for
%REL2. A 2C%V does not reveal the cardinality of the SC it belongs to. As a result,
cardinalities as factors contributing to similarity assessments cease to matter. If the
2-class %-vectors of two SCs are highly similar, %REL?2 deems the SCs highly simi-
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lar, even if one is a tetrad class and the other a nonad class. The value group infor-
mation table 3.2 shows that the lowest value in the value group #4/#9 is 6, i.e., an
extremely low value. Furthermore, the average value in the value group #9/#45 is 20,
lower than the value group #5/#5 average. The reason is that all nonad classes and
many pentad classes have reasonably level 2-class %-vectors, resulting in a relatively
low average. Some pentad classes, by contrast, have peaked 2%CVs, and pairwise
comparisons between these increase the #5/#5 average.

Generally, some of the comparison groups with highly different cardinalities
seem to produce counterintuitively low values. We could, of course, defend %REL2
by saying that it measures truthfully what it was set to measure. A more fruitful ap-
proach, however, is to seek for improvements by applying the total subset-class con-
tents criterion C5. By comparing entire subset-class contents the cardinality differ-
ence will be reflected in the final result, even if the proportional dyad class distribu-
tions would be highly similar. T%REL, the resulting expansion of %RELp, is to be
examined in section 3.7.4. RECREL, in turn, is the result of applying the non-com-
mon subset-class criterion C6 to T%REL.

3.5 SIMILARITY RELATIONS NOT PRODUCING NUMERIC VALUES
3.5.1 Forte: The R1 Relation

Presented in Forte (1973a:46-60). A similarity relation comparing interval-class vec-
tors. No numeric values produced. The outcome is an indication whether or not the
relation holds. Applies to SCs of the same cardinality only.

COMPARISON PROCEDURE:
Two SCs are in the relation R if four of the six corresponding components in their

ICVs are the same and the remaining two correspond crosswisely.

EXAMPLE 3.7: R(4-2,4-3). Prime forms and ICVs.8
4-2: {0,1,2,4}, [2 2 1 1 0 0]
4-3: {0,1,3,4}, [2 1 2 1 0 0]

The corresponding components in the two vectors are of the same size in four indexes, 1, 4, 5 and 6.

In indexes 2 and 3 the corresponding components are different. The two latter pairs consist of the
same components, 1 and 2. 4-2 and 4-3 are in the Rj relation.

8 Examples 3.7 and 3.8 are from Forte (1973a:48).
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EVALUATION CRITERIA FULFILLED:
None.

3.5.1.1 Analysis

In (1964) and (1973a:46-60) Forte discusses similarity relations based on comparisons
between ICVs. All are intended for SCs of the same cardinality only. The limitation
is no doubt intentional. It becomes evident from Forte's discussion that he sees the
inclusion relation as an important element in assessing similarity between SCs
(1973a:24-46, 93-108). As inclusion considerations exclude SCs of the same cardinal-
ity, the need for specialised relations emerges.

R1 does not meet any of our criteria. Due to their similarity, R1 and its closely
related variant R2 are examined together in section 3.5.2.1. Further aspects of Forte's

relations are examined in section 3.5.4.

3.5.2 Forte: The R2 Relation

Presented in Forte (1973a:46-60). A similarity relation comparing interval-class vec-
tors. No numeric values produced. The outcome is an indication whether or not the
relation holds. Applies to SCs of the same cardinality only.

COMPARISON PROCEDURE:
Two SCs are in the relation R if four of the six corresponding components in their

ICVs are the same, but the remaining two do not correspond crosswisely.

EXAMPLE 3.8: Rp(5-10,5-Z12). Prime forms and ICVs.

The corresponding components in the two vectors are of the same size in four indexes, 1, 2, 4 and 6.
Components in indexes 3 and 5 form pairs {3,2} and {1,2}, contents of which are not identical. The SCs
are in the R relation.

EVALUATION CRITERIA FULFILLED:
None.
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3.5.2.1 Analysis

According to Forte, R] and R2 indicate maximum similarity with respect to interval
class (1973a:49), the former representing a closer relationship than the latter (Ibid.,
48). Since the common criterion is equality between four pairs of corresponding
components, comparisons are launched by observing similarities between ic distri-
butions. This notion, however, is not applied to the remaining two pairs of corre-
sponding components. They can be nearly similar or highly different without affect-
ing the outcome. Intuitively, then, they represent clearly varying degrees of similar-
ity, suggesting a hidden gradation of similarity for pairs enjoying R1 or R2. See Ex.
3.9.

EXAMPLE 3.9: R1-related SC pair {6-1,6-32} and Rp-related SC pair {6-724,6-Z26).

ICV(6-1)
ICV(6-32)

ICV(6-z24)
ICV(6-7226)

[543 210]
[1 4 325 0]

nn
— —

The pair to the left is R1-related, the pair to the right R-related. In the ICVs of the
pair {6-1,6-32}, both pairs of non-identical corresponding components produce the
difference four. In the ICVs of the pair {6-Z24,6-726}, the difference is in both cases
one. One third of the indexes in the former pair contain highly different compo-
nents, whereas in the latter, the ic contents represent the smallest possible deviation
from the identical.9 R1 and R?2, however, deem the former pair more similar.
Dissimilarity between corresponding components is ignored, since greater similarity
is available between non-corresponding components. The sole ic5 instance in 6-1 is
paired with the icl instance in 6-32, the five icl instances in 6-1 with the five ic5 in-
stances in 6-32. Correspondence like this is completely artificial. From the point of
view of the size difference between components in index 1, it is irrelevant what sort
of components reside in index 5. The extent to which one class of objects is present
does not balance out, rectify or contradict the extent to which another class of objects

is present.

9 %REL(6-1,6-32) = 27; %REL(6-Z24,6-726) = 7; k(6-1,6-32) = 11(15); k(6-224,6-Z26) = 14(15).
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3.5.3 Forte: The Rg Relation

Presented in Forte (1973a:46-60). A similarity relation comparing interval-class vec-
tors and indicating minimum similarity. No numeric values produced. The outcome
is an indication whether or not the relation holds. Applies to SCs of the same cardi-
nality only.

COMPARISON PROCEDURE:
Two SCs are in the relation R if all corresponding components in their ICVs are dif-

ferent.

EXAMPLE 3.10: R((4-Z15,4-28). Prime forms and ICVs.

4-7z15: {0,1,4,6}, [1 1
[0 O

11 1]
4-28: {0,3,6,9}, 00 2]

BN

All corresponding components in the two ICVs are different. The SCs are in the R relation.

EVALUATION CRITERIA FULFILLED:
None.

3.53.1 Analysis

Rg has the same feature as R1 and R2, a gradation of similarity for SC pairs enjoying
it, ignored but still evident. Ex. 3.11.

EXAMPLE 3.11: Rg-related SC pairs {6-Z3,6-Z17} and {6-Z6,6-35}.

ICV(6-23)

[4 33 221] ICV(6-26)
ICV(6-217) [3 2233 2]

ICV(6-35)

o
o
o's
an
or
o
on
w N
i

Both ICVs belonging to the pair {6-Z3,6-Z17} are reasonably level, the difference be-
tween corresponding components being 1 in every index. Their k measure value is
12(15). The vectors of the pair {6-Z6,6-35}, by contrast, have considerably larger dif-
ferences between corresponding components. k(6-Z6,6-35) = 6(15), which suggests a
clearly lower degree of similarity than for the former pair. %REL2(6-Z3,6-Z17) = 20;
%REL2(6-26,6-35) = 60.
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3.5.4 R1i,R2 and Rg: Conclusions

On the basis of the discussion above, we deem the R1, R2 and R relations to be
weak methods for demonstrating SC similarity. They have been criticised by a num-
ber of theorists (Regener 1974, Lord 1981, Chapman 1981, Isaacson 1990). Besides the
coarseness of the relations and their inability to relate SCs of different cardinalities,
they do not form a complete system. Many SC pairs are in none of the relations.
Also, Z-related SCs are not categorised in terms of the relations (Isaacson 1990:2-4).

3.5.5 Forte: The Compound Relations

In his introductory remarks for the similarity relations in (1973a:46), Forte discusses
the usefulness of relations that can determine the degree of similarity between two
SCs. As his own relations do not offer gradation individually, he may have thought
of them as constituting a "superrelation” together. Different relations would identify
different levels of SC similarity, the combined result being a rough "scale” from max-
imally similar to minimally similar.

He does not develop this approach systematically, but offers different view-
points to SC similarity by using his relations in a number of different combinations.
These involve the Rp relation and the R1, R2 and R relations.10 He states that in
general, maximum similarity with respect to both pitch class and interval class will
be regarded as more significant than pitch class similarity alone or interval class
similarity alone (1973a:50). Some of these Compound relations, combining Rp with R1
and/or R2, no doubt demonstrate similarity between SCs better than any of the re-
lations alone. To an extent they approach the total subset-class contents criterion C5
by combining aspects of ic and pc inclusion (section 2.4.4), but they do not fare any
better from the point of view of our criteria. Other compound relations are counter-
intuitive as they unite a relation indicating similarity (Rp, R1 or R2) with one indi-
cating dissimilarity (RQ or the absence of Rp). Forte does not analyse the descriptive
powers of the latter compound relations at all, only calls them "extraordinary” and
"interesting." He even refers to a musical example where a compound relation sug-
gests that melody and accompaniment are “at once similar and dissimilar." (Ibid., 50-
1).

10 Forte (1973a:50-60, 182-95). For a description of the Rp relation, see (Ibid., 47-8), or section 1.1, n 10.
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3.5.6 Alphonce: The Difference Value Relation

Presented in Alphonce (1974:149-53).11 A similarity relation comparing correspond-
ing n-class vectors.

COMPARISON PROCEDURE:

Absolute values of the differences between corresponding vector components con-
stitute an absolute-value difference vector, or ADV.12 The ADV components are ar-
ranged in ascending order. Nonzero numbers are interpreted as a single integer,
which, in turn, is interpreted as the value of the comparison. The number of digits in
the value is the same as the number of non-equal corresponding components in the
compared vectors. Fewer digits indicate closer similarity.

EXAMPLE 3.12: The Difference Value between SCs 4-1 and 4-2.13

2CVv(4-1) = [3 2 1 0 0 0]
20vV(4-2) = [2. 2 1 1 0 0}
ADV [1 0 01 0 0] => Asc.order:[0 0 0 0 1 1] => Value: 11

EVALUATION CRITERIA FULFILLED:
None (?).

3.5.6.1 Analysis

When introducing the Difference Value relation in (1974:149), Alphonce warns his
readers that his discussion is highly tentative. He then presents the relation in such
poor detail that it is difficult to assess how it relates to our evaluation criteria. It is
not indicated, for example, whether SCs of different cardinalities can be compared.
Alphonce suggests that any n-class vectors or even entire subset-class contents could
be compared, not merely 2CVs. He offers no concrete analysis or results, however,
only an observation that with other than 2-class vectors the difference values be-

11 Alphonce does not give a name to his relation, but calls its results "difference values". We will
adopt this name for the whole comparison method.

12 Alphonce uses the term Difference Vector, but in this study the term is reserved to another kind of
vector. The term ADV is from Isaacson (1992:111).

13 The example is from Alphonce (1974:151).
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come clumsy (Ibid., 152-53).14

We saw above that Forte's R] and R) relations emphasize identical corre-
sponding components and ignore the contribution of the non-identical ones. Rg, in
turn, equates non-identical with minimally similar, although different cases may
represent varying degrees of similarity. Alphonce's relation has defects resembling
these.15 Ex. 3.13 gives two SC pairs already familiar from examples above.

EXAMPLE 3.13: 2CVs and ADVs of SC pairs {6-1,6-32} and {6-Z3,6-Z17}.

2Cv(6-1) =

[543 210] 2Cv(6-23) = [4 3 3 2 2 1]
2Cv(6-32)= {1 4 3 2 5 0] 2Cv(6-217)= [3.2 2 3 3 2]
ADV [4 0 0 0 4 0] => 44 ADV [1 11 11 1] => 111111

In the 2CVs of the {6-1,6-32} pair, dissimilarities occur in only two indexes. In the
other vector pair, all corresponding components differ. As a result, the first value,
44, belongs to the most similar, two-digit value category. The latter value, 111111,
with its six digits, belongs to the most dissimilar one. Both %REL2 and the k mea-
sure, however, suggest closer similarity to the latter pair. %REL2(6-1,6-32) = 27;
%REL2(6-Z3,6-217) = 20; k(6-1,6-32) = 11(15); k(6-Z3,6-Z17) = 12(15). The implication
that few, but dramatic, component size differences automatically indicate closer
similarity than several small ones is unsubstantiated.

The relation also inadvertently takes into account something else than subset-
class content similarity, i.e., it favors peaked vectors. See Ex. 3.14.

EXAMPLE 3.14: 2CVs and ADVs of four triad class pairs.

2Cv(3-10) = [0 0 2 0 O 1] 2Cv(3-7) =101 101 0]
2Cv(3-12) = [0 0 0 3 0 0] 2CVv(3-12) = [0 0 0 3 0 0]
ADV [0 0 2 3 0 11 ADV [0 1 1 3 1 0]
2Cv(3-9) = [0 1 0 0 2 0] 2CV{(3-5) = [1 00 0 1 1]
2Cv(3-10) = (0.0 2 0 0 1} 2CV(3-6) = [0 2 0 1 0 O]
ADV [0 1 2 0 2 1] ADV [1 2 0 1 1 1]

The four SC pairs are comparable in the sense that each SC is of the same cardinality
and the dyad class contents of the SCs in each pair are disjoint. (The k value is 0(2)

14 Alphonce also outlines an alternative for his relation, which turns out to be exactly the SIM rela-
tion presented in Morris (1979-80). He rejects it, however, on the grounds that it loses a viewpoint he
deems important, the number of equal corresponding components in the compared vectors.

15 Forte's R relations relate to Alphonce's so that R corresponds to six-digit difference values, R1 and
R to two-digit values. Difference values do not distinguish between R1 and R2 (Alphonce 1974:152).
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for every pair). Yet the Difference Value relation produces a different value for every
pair. The values are 123, 1113, 1122 and 11112, in order of increasing dissimilarity.
Moreover, some triad class pairs with k value 1(2) have a difference value indicating
a higher degree of dissimilarity than the value 123. The value between the SCs in the
pair {3-1,3-5}, for example, is 1111, although the SCs share an instance of the dyad
class 2-1.

The Difference Value relation is a peculiar hybrid between a measure and a
non-numeric similarity relation. It does produce numeric values, but these constitute
a scale where consecutive values are separated both by reasonably small intervals
and by huge leaps, resulting in similarity assessments that are quite simply absurd.
The crucial point is that Alphonce does not say how the values are to be interpreted,
as genuine values on a genuine scale or as some other types of results identifying
some approximate categories of similarity. We assume the latter alternative is the
correct one, and deem the values meaningless. The former alternative would suggest
that the {6-Z3,6-Z17} pair is 2,525 times more dissimilar than the {6-1,6-32} pair. The
entire value group #6/#6, if taken literally, would produce even more controversial
results.

3.5.7 Solomon: The R Relation

Presented in Solomon (1982). A similarity relation comparing both interval-class
vectors and pc contents. No numeric values produced. The outcome is an indication
whether or not the relation holds. Applies to SCs of the same cardinality only.

COMPARISON PROCEDURE:

SCs X and Y of cardinality n are in the R relation if (1) for a pcset in X there is a pcset
in Y so that the two have n-1 pcs in common,16 (2) the numeric values of the two pcs
not in common are consecutive mod 12, (3) the value for k(X,Y) is equal to or greater
than the value of the formula (#ICV(X) * #X)/8.17

16 The first condition is the same as Forte's Rp relation.

17 30lomon, like a number of other theorists, is in the unfortunate habit of using the term set for both
pe collections and set-classes. He defines the relation with the help of individual pc collections, the
prime forms, without indicating how the relation holds abstractly between SCs. It is assumed here
that the R relation, like the Rp relation in Forte (1973a:50), can be "weakly represented” between
pesets with few or no common elements.
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EXAMPLE 3.15: R(6-726,6-34). Prime forms and ICVs.18

6-7226:

{0,1,3,5,7,8}, [2 3 2 3 4 1]
6-34: {0,1,3,5,7,9}, [1 4 2 4 2 2]

Condition (1) is satisfied as there are five pcs in common between the prime forms. Condition (2) is
satisfied as the non-shared pcs 8 and 9 are consecutive. Condition (3) is satisfied, as the value for
k(6-726,6-34), 12(15), is larger than the value for (#ICV(6-Z26) * #6-226)/8 = (15 * 6)/8 = 11.25. The
SCs are in the R relation.

EVALUATION CRITERIA FULFILLED:
None.

3.5.7.1 Analysis

Solomon never analyses the suggested importance of the smailest possible move-
ment between non-common pcs (condition 2), or the purpose of the formula
(#ICV(X)*#X)/8 (condition 3). Due to the peculiar constant divisor in the formula,
the R relation treats different cardinalities quite differently. Given the comparison
group #4/#4, for example, the value of the formula is 3 and the highest k value for a
tetrad class pair 6. Obviously, the relation can hold if the other conditions are met.
For pairs in the comparison group #9/#9, in turn, the highest k value is 35 and the
value of the formula 40.5. As the latter is higher than the former, the relation cannot
hold between nonad classes. In fact, the R relation does not hold between any SC
pairs of cardinality 8 or larger (Solomon 1982:75). So drastic a feature in a similarity
relation would demand most detailed analysis and argumentation, none of which
can be found in Solomon (1982). The validity of the relation is highly questionable.

3.6 SIMILARITY MEASURES COMPARING ONE SUBSET-CLASS
CARDINALITY AT A TIME

3.6.1 Teitelbaum: The Similarity Index (s.i.)

Presented in Teitelbaum (1965). A similarity measure pairing interval-class instances

by one-to-one correspondence. For SCs of the same cardinality only. Z-related SCs
are not compared.

18 The example is from Solomon (1982).
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COMPARISON PROCEDURE:
Differences between corresponding ICV components are squared and added to-
gether. The final result is the square root of the sum.

EQUATION:

s10KY) = \/ lz: (x, - v; )2

EXAMPLE 3.16: 5.i.(4-1,4-2). Prime forms and ICVs.19

4-1:
4"2: ‘[01112/4}/

s.i.(4-14-2) =

\/(3—2)2+(2—2)2+(1—1)2+(o—1)2+(o—0)2+(o—0)2

N1+0+0+14+0+0

V2 = 1.41

EVALUATION CRITERIA FULFILLED: 20
C3.3,C34.

THE SET OF VALUES: 21
Value indicating highest degree of similarity: V2 = 1.41. Value indicating highest de-
gree of dissimilarity: V72 =~ 8.49. Average: 2.85. Number of distinct values: 31.
8.i.(X,Y) = s.i.(XC,YC).

19 After Teitelbaum (1965).

20 The value managability criterion C3.3 is met if the values are given in the square root notation
Teitelbaum uses, and not as irrational numbers. When examining the different value groups, non-in-
teger values were rounded to two decimal places.

21 The set of values comprises values in the nine value groups #n/#n, 2 <n < 10. Values produced by
Z-related pairs are excluded. As the measure does not meet the value commensurability criterion
C3.1, this information is of limited importance.
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TABLE 3.3: The s.i value groups #n/#n, 3 < n < 9. Within a given value group, lower values indicate
higher degrees of similarity. Each table cell contains: the lowest and highest values, the average, the
number of distinct values.

#3/#3(1.41 3.74 2.29 7
#4/#411.41 5.48 2.74 14
#5/4#5(1.41 6.0 2.79 18
#6/#4611.41 8.49 3.1 30
#7/4711.41 6.0 2.79 18
#8/4811.41 5.48 2.74 14
#9/4911.41 3.74 2.29 7

3.6.1.1 Analysis

In Table 3.3, the figures belonging to the value group #n/#n duplicate those belong -
ing to the value group #(12-n)/#(12-n). Complementary comparison groups, like
two individual SCs and their complements, produce identical results. All value
groups share the same minimum value, whereas the maxima vary. The highest indi-
vidual value, 8.49, is produced by the pair {6-20,6-35}. s.i. does not meet criterion
C3.1, meaning that a given value v can indicate different degrees of similarity in dif-
ferent value groups.

The measure also fails to meet C4, the criterion calling for a uniform value for
all comparable cases. The reason is the squaring of the ICV component differences.
(See section 2.4.3). s.i. is one of the measures treating level and peaked vectors dif-
ferently. Let us examine this with a few comparisons. (Ex. 3.17).

EXAMPLE 3.17: Interval-class vectors of five triad classes.

ICV(3-1) = [2 100 0 0]
ICV(3-10) = [0 0 2 0 O 1]
ICV(3-11]) = [0 0 1 1 1 0]
ICV(3-12) = [0 0 0 3 0 0]
ICV(3-9) =101 00 2 0]

3-1 does not have any ic instances in common with SCs 3-10, 3-11 or 3-12. It would
be natural to expect, then, that the uniform k value 0(2) would mean also a uniform
s.i. value between 3-1 and each of the three other SCs. In fact, all three values are dif-
ferent. s.i.(3-1,3-11) = 2.83; s.i.(3-1,3-10) = 3.16; s.i.(3-1,3-12) = 3.74. The lowest of
these values is with 3-11, as its ICV has as even ic instance distribution as possible.
ICV(3-10) is slightly more peaked, and ICV(3-12) contains the largest component. s.i.
punishes the SCs with increasingly peaked vectors with increasing values.
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Furthermore, SCs 3-1 and 3-9 have one instance of ic2 in common. Despite the fact
that k(3-1,3-9) = 1(2), s.i.(3-1,3-9) = 2.83. This is exactly the same value 3-1 had with
3-11, a SC with disjoint ic contents. As the component 2 in the fifth index of ICV(3-9)
is squared, the "shared-instance advantage" which 3-9 has over 3-11 loses its mean-
ing. In extreme cases, s.i. may even suggest closer similarity to a pair with a lower k
value. Ex. 3.18.

EXAMPLE 3.18: Interval-class vectors of four hexad classes.

ICV(6-7) = [4 2 0 2 4 3]
ICV(6-34) = [1 4 2 4 2 2}
ICcV(6-1) = [543 2 1 0]
ICV(6-32) = [1 4 3 2 5 0]

5.1.(6-7,6-34) = 5.1 and s.i.(6-1,6-32) = 5.66. The SCs in the former pair are deemed
more similar than those in the latter. Yet k(6-7,6-34) = 9(15) and k(6-1,6-32) = 11(15).
The principle behind s.i. is the opposite of the one behind Forte's R1 and R2 (section
3.5.2.1). Forte's relations ignore large individual component size differences as long
as four corresponding components are equal. s.i. ignores four equal corresponding
components if large component size differences are to be found. The idea implied is
that a few sharp differences override an otherwise strong distributional similarity, to
the extent that the very starting point, shared-ic instance count, is relegated to sec-
ondary importance. In other words, more mutually embedded ic instances means
less SC similarity if the unilaterally embedded ic instances are not evenly dis-
tributed, but constitute peaks in the vector. (Section 2.4.3). This is a very precise
claim, and in our view a mistaken one. It is not even identified, let alone analysed, in
Teitelbaum (1965).

3.6.2 Morris: SIM

Presented in Morris (1979-80). A similarity measure pairing interval-class instances
by one-to-one correspondence.

COMPARISON PROCEDURE:
Absolute values of the differences between corresponding ICV components are
added together. '
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EQUATION:

1

6
SIM(XY)= Y |x, - V,
i=1

EXAMPLE 3.19: SIM(8-9,8-1). Prime forms and ICVs.22

,9}, [6 4 4 4 6 4]
7Y, [7 6 5 4 4 2]
SIM(8-9,8-1) = 16-7 1 +14-61+14-51+14-41+16-41+14-21

=1+2+1+0+242 =8

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.3,C34, C4.

THE SIM VALUE GROUP #2-#12/#2-#12:23

All values are integers. Value indicating highest degree of similarity: 0. Value indi-
cating highest degree of dissimilarity: 65. Average: 13. Number of distinct values:
44. If #X = #Y, SIM(X,Y) = SIM(XC ,YC). If #X = #Y, SIM(X,Y) may or may not be
SIM(XC,YC). SIM(X,XC) = 11g/2, where g is the difference between #X and #X C, #X
being larger than #XC (Morris 1979-80:451).

TABLE 3.4: The SIM value groups #n/#m, 3 < n,m < 9. Within a given value group, lower values in -
dicate higher degrees of similarity. Each table cell contains, clockwise from the top left: the lowest
and highest values, the number of distinct values, the average.

#3
2 3
#314 09 3 #4
3 5 |0 10
#l5 19 4 |[5.37 6 #5
us|? 11 |a 12 |0 12
78 3 l6.27 5 |s.4 7 #6
|2 16 |9 17 |5 17 o 18
12.283 [o9.8 5 |7.03 6 |6.1 10 #7
4|18 18 |15 15 |11 17 [6 18 |0 12
18.0 1 [15.093 [11.3 4 [7.69 6 [5.4 7 #8
s|25 25 [22 22 [18 18 [13 21 |7 15 |0 10
los.0 1 [22.0 1 180 1 [13.215 [7.89 5 |5.37 ¢ #9
4o[33 33 [30 30 [26 26 [21 21 15 15 |8 14 |2 3
33.0 1 [30.0 1 [26.0 1 |21.0 1 [15.0 1 [8.44 4 [a.09 3

22 After Morris (1979-80:447).

23 As the measure does not meet the value commensurability criterion C3.1, this information is of
limited importance.
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3.6.2.1 Analysis

The lowest value, 0, is produced only by comparisons between Z-related classes.
(Table 3.4, value groups #n/#n, 4 < n < 8). The scale of values is not the same in all
value groups, but within a given comparison group, all comparable SC pairs have a
uniform SIM value. In the comparison group #3/#4, for example, all pairs with k
value 0(3) have the SIM value 9. Pairs with k value 1(3) have the SIM value 7, etc.24

The highest SIM values are obtained from comparisons between SCs of
greatly differing cardinalities. When the difference between the comparison group
cardinalities becomes sufficiently great, SIM produces value groups with multiple
instances of only one value (Morris 1979-80:447-8). The uniform value is equal to
#ICV(X) - #ICV(Y), #X being larger than #Y. Thus, for example, all values in the
value group #3/#9 are instances of the value 33, as the sum of components in the
ICV of a nonad class is 36, and that in the ICV of a triad class 3. When the value
group contains instances of more than one value, the same formula #ICV(X) -
#ICV(Y) gives the lowest value in the group. For example, in the value group #4/#5,
the lowest value is 4. For every pentad class X, #ICV(X) = 10, for every tetrad class Y,
#ICV(Y) = 6 (Ibid., 447).

3.6.2.2 SIM, %RELp and the k Measure

Let us examine some results which SIM returns from comparisons made between
SCs of two different cardinalities. We will compare SC 3-5 to four tetrad classes, 4-9,

4-6, 4-5 and 4-Z15. To get a point of reference, we compare the same pairs also with
%REL2. Ex. 3.20.

EXAMPLE 3.20: The ICVs and 2C%Vs of five SCs.

ICV(3-5) = [100011], 2C%V(3-5) = [33 0 0 0 33 331
ICV(4-9) = [2 000 2 2], 2C%V(4-9) = [33 0 0 0 33 33]
ICV(4-6) = [2100 2 1], 2C%V(4-6) = [33 17 0 0 33 17]
ICV(4-5) =[210111], 2C%V(4-5) = [33 17 0 17 17 17]
ICV(4-215) = [1 1 1 1 1 17, 2C%V(4-215) = [17 17 17 17 17 17]

The SIM value between 3-5 and each of the tetrad classes is the same, 3. By,
contrast, the %REL? value between 3-5 and each of the tetrad classes is different.

24 The correlation between SIM and k was examined in section 3.4.1.1.
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%REL2(3-5,4-9) = 0; %REL2(3-54-6) = 17; %REL2(3-54-5) = 33; %REL2(3-5,4-Z15) =
50.

For SIM, the decisive factor in gaining the uniform value is that the nonzero
components in ICV(3-5) are matched with at least equal-sized components in the
ICVs of the tetrad classes. The smaller contents are in a sense "swallowed" by each of
the larger ones, and the distribution of the remaining ic instances in the tetrad class
ICVs has no effect on the outcome.

We might note, however, that in ICV(3-5) and ICV(4-9) the nonzero compo-
nents are located exactly in the same indexes and, furthermore, within each vector,
the nonzero components are of the same size. Also ICV(4-6) bears obvious resem-
blances to ICV(3-5), as only one of its nonzero components, in index 2, has a zero
counterpart in the latter. ICV(4-5) already contains instances of two ics, 2 and 4, that
are not represented in ICV(3-5). Differences between ICV(4-Z15) and ICV(3-5) are
even more evident, as ics 2, 3 and 4 contribute to the former but not to the latter.
With respect to 3-5, the tetrad classes seem to be ordered according to increasing
dissimilarity.

Ex. 3.20 illustrates what in our opinion is a serious defect in SIM. When two
different-sized ic contents are compared, an important aspect is entirely ignored, i.e.,
similarity between what we will call the profiles of the contents: are they similar not
only with respect to mutually embedded, but also with respect to mutually excluded
ics; do certain ics dominate both contents with similar relative strengths, etc.

We believe that comparing proportional ic instance distributions instead of
absolute ones is a better way to demonstrate the sense of varying similarity between
3-5 and the 4-pc classes. To put it simply, the four %REL? values vary because the
nonzero components in 2C%V(3-5) are large. Every non-matching feature between a
tetrad class 2C%V and 2C%V(3-5) is reflected in an increasing %REL?2 value. From
this point of view the position of 4-9 is unique, as its 2C%}V is identical to that of 3-5.
Also the relative closeness of 4-6 is evident, as only one sixth of its proportional ic
contents do not match those of 3-5. For 4-5 the corresponding non-matching share is
one third, for 4-Z15 it is already a half.

SIM's resolution is already somewhat coarse at the point where the difference
between the cardinalities is only one. When the difference grows larger, the coarse-
ness increases accordingly. In the value group #4/#7, for instance, the lowest value
is 15. Among other pairs this value belongs to {4-Z15,7-28}. The highest value is only
4 points higher, 19. This value can be obtained, for example, from the comparison
between 4-28 and 7-15. The ICVs of these two SC pairs are given in Ex. 3.21.
%REL2(4-Z15,7-28) = 7; %REL2(4-28,7-15) = 76.
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EXAMPLE 3.21: Interval-class vectors of four SCs.

ICV(4-215) = [1 1111 1]
ICV(7-28) = [3 4 4 4 3 3]
ICV(4-28) = [0 0 4 0 0 2]
ICV(7-15) = [4 4 2 4 4 3]

SIM's coarseness reaches its extreme in the uniform-valued value groups. (Table
3.4). Given such a value group, as well as the comparison group #n/#m producing
it (n being smaller than m), we see that the ith component in every ICV of every n-pc
class is smaller than or at most equal to the ith component in every ICV of every m-
pc class. Let us examine the comparison group #4/#8. Among the ICVs of the tetrad
classes, the largest component to be found in indexes 1, 2, 4 and 5 is three, in index 3
four and in index 6 two. Among the ICVs of the octad classes, the smallest compo-
nent to be found in indexes 1-5 is four, in index 6 two. In each of the 841 compar-
isons in the group, the ic contents of the tetrad class are completely embedded in
those of the octad class, and the result is one of the uniform-valued value groups.
From the point of view of SIM, the varying ic characteristics of the smaller classes
have no significance whatsoever.

It seems natural to assume that cardinality difference is an important differen-
tiating factor between SCs, but there is no reason to deem it so important that ic
characteristics become totally meaningless. On the contrary, ic characteristics are the
reason to reject SIM's suggestion that the degree of similarity between the SC pair
{9-2,6-Z10} is identical to that between the pair {9-2,6-35}. The common SIM value is
21. %REL(9-2,6-Z10) = 5; %REL(9-2,6-35) = 56. Ex. 3.22.

EXAMPLE 3.22: Interval-class vectors of three SCs.

ICV(9-2) = [7 77 6 6 3]
ICV(6-210) = [3 3 3 3 2 1]
ICV(6-35) = [0 6 0 6 0 3]

We saw in section 3.4.1.1 that SIM and the k measure are closely connected. As the
numbers of distinct values are identical for all corresponding SIM and k value
groups, it is obvious that the latter shares SIM's poor resolution in value groups
#n/#m where there is a large difference between n and m. Also, it shares SIM's in -
sensitivity to similarities between ic content profiles. All the triad-tetrad class pairs
in Ex. 3.20, having a uniform SIM value, also have the uniform k value 3(3).
Likewise, both nonad-hexad class pairs in Ex. 3.22 produce the k value 15(15).

SIM and k could be defended by saying that coarseness is not their property,
but a property of the SC universe itself. In a sense this is true. All sufficiently small
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ic contents are embedded in all sufficiently large ones. In fact, if a measure observes
extents of shared elements in ic contents and does not produce these uniform-valued
value groups, it also observes something else, intentionally or otherwise. SIM and k
process correctly what they were set to process, and we do not criticise them for
showing the results they show, but for measuring what they measure. %RELp, func-
tions better in terms of identifying grades of similarity between ic content profiles,
but was previously seen as having problems of its own. (Section 3.4.2.1). It is in junc-
tures like this that we identify the need for the total measures. Comparisons of lim-
ited materials seem always to produce at least some counterintuitive results, no mat-
ter what approach is selected.

3.6.3 Morris: ASIM

Absolute SIM. A modification of the SIM measure. Presented in Morris (1979-80). A
similarity measure pairing interval-class instances by one-to-one correspondence.

COMPARISON PROCEDURE:

Absolute values of the differences between corresponding ICV components are
added together. The sum is divided by the total number of ic instances in the two
ICVs.

EQUATION:

SIM(X, Y)
# ICV(X)+# ICV(Y)

ASIM(X,Y) =

EXAMPLE 3.23: ASIM(3-1,4-16). Prime forms and ICVs.25

3-1: {0,1,2}, [2 1000 0]
4-16: {0,1,5,7}, [1 1 01 2 1]

#ICV(3-1) + #ICV(4-16) = 3+6 = 9.

SIM(3-1,4-16) = 5. ASIM(3-1,4-16) = 5/9 = 0.56.

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C34, C4.

25 After Morris (1979-80:450).
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THE ASIM VALUE GROUP #2-#12/#2-#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 0. Value indicating highest degree of dissimilarity: 1. Average: 0.42.
Number of distinct values: 79. ASIM(X,Y) may or may not be ASIM(XC,YC).

TABLE 3.5: The ASIM value groups #n/#m, 3 < n,m < 9. Lower values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
033 1.0
#3l0 68 3 #4
0.33 1.0 [0.0 0.83
#losga  Jo.as 6 #5
4s|0.54 0.85[025 0.75[0.0_ 0.6
06 3 Jo3ss o277 #6
4ol0-67 0.89[0.43 0.8T[0.2 068[0.0 0.6
0693 lo.a75 o286 lo.2 10 #7
4o|0-75 0.75[0.56 0.7 [0.35 0.55[0.17 0.5 [0.0 0.25
0751 o563 [o.364 Jo.216 [0.137 #8
4o|0-81 0.81[0.65 0.650.47 0.47[0.3 0.45[0.14 0.31[0.0 0.18
0811 foes1 fo.a71 o315 Jo.t65 Jo.1 6 #9
4o[0-85 0.85(0.71 0.710.57 0.57[0.41 0.41[0.26 0.26 [0.1Z 0.22[0.03 0.08
0851 Jo.711 Jos71 o.at 1 lo2e1 fo.134 fo.0s 3

3.6.3.1 Analysis

SIM's most obvious problem, inability to meet the value commensurability criterion
C3.1, is successfully solved in ASIM. As shown in Table 3.5, comparing values from
different value groups is now meaningful. We see at a glance, for example, that the
average values of the #n/#n value groups, 3 < n <9, decrease rapidly as n grows.
Or, that the ranges between minimum and maximum values are much wider in
value groups involving two small cardinalities than in those involving two large
ones.

Comparing the ASIM Table 3.5 to the SIM Table 3.4 shows that the numbers
of distinct values in corresponding value groups are identical between SIM and
ASIM. This means that ASIM too produces uniform-valued value groups. For ex-
ample, the value group #6/#9 contains instances of the value 0.41 only. With the ex -
ception of the uniform scale of values, ASIM shares SIM's disadvantages. The reason
is that the scaling of a SIM value with the vector component sums is done as the last
step. (In %RELp the vectors are scaled before comparison).26 The poor resolution in

26 When SCs of the same cardinality are compared, the order between scaling and comparing is not
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some of the value groups remains, as does the insensitivity to similarities between
the ic content profiles. Consequently, in Ex. 3.20 above, the ASIM values of the four
triad-tetrad class comparisons would be uniform, 0.33. Both nonad-hexad class pairs
in Ex. 3.22 produce the ASIM value 0.41, etc.

3.64 Lord: The Similarity Function (sf)

Presented in Lord (1981). A similarity measure pairing interval-class instances by
one-to-one correspondence. For SCs of the same cardinality only.

COMPARISON PROCEDURE:
The sum of the absolute values of the differences between corresponding ICV com-
ponents is divided by two.

EQUATION:

6
2% - v
sAX,Y) = lﬂf

EXAMPLE 3.24: sf(6-1,6-Z4). Prime forms and ICVs.27

sf(6-1,6-Z4) =

5—-4|+[4-3]+3-2[+[2-3|+[1-2]+]|0-1] _
2

1+1+1+1+1+1
2

=3

EVALUATION CRITERIA FULFILLED:
C3.3,C3.4,C4.

crucial. Because of this, there is an straight correlation between the entries in the #n/#n table cells of
the %REL2 Table 3.2 and the ASIM Table 3.5. The %REL2 minimum, maximum and average entries
are 100 times larger than their ASIM counterparts, with some minor differences due to rounding. The
distinct value entries are identical. Between other value groups the correlation does not exist.

27 After Lord (1981).
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THE SET OF VALUES: 28
All values are integers. Value indicating highest degree of similarity: 0. Value indi-
cating highest degree of dissimilarity: 9. Average: 3. Number of distinct values: 10.

sfIX,Y) = sfIXC,YC) :

TABLE 3.6: The & value groups #n/#n, 3 <n < 9. Within a given value group, lower values indicate
higher degrees of similarity. Each table cell contains: the lowest and highest values, the average, the
number of distinct values.

#3/#311 3 2.05 3
#4/#4|0 5 2.69 6
#5/#5|0 6 2.7 7
#6/#46|0 9 3.05 10
#7/#7|0 6 2.7 7
#8/#810 5 2.69 6
#9/#911 3 2.05 3

3.6.4.1 Analysis

Lord's Similarity Function is almost identical to SIM, but was developed indepen-
dently (Lord 1981:111). For every SC pair {X,Y} of the same cardinality, sf(X,Y) =
SIM(X,Y)/2. According to Lord, the reason for halving the summation is to avoid
counting each change in ic content twice - once where a given interval class is in-
creased, and once for a corresponding decrease in another class (1981:93). Lord
tested sf also with SCs of different cardinalities, but deemed the results disappoint-
ing. Probably he became aware of the problems we saw in SIM, a coarse degree of
discrimination in some value groups and insensitivity to similarities between ic con-
tent profiles. A modification of sf which allows comparisons between SCs of differ-
ent cardinalities is discussed, but no concrete results are provided (1981:109-10).

3.6.5 Isaacson: The IcVSIM Relation
The Interval-class Vector Similarity Relation. A scaled version of Teitelbaum's s.i.

Presented in Isaacson (1990). Discussed at length also in Isaacson (1992). A similarity
measure pairing interval-class instances by one-to-one correspondence.

28 The set of values comprises values in the nine value groups #n/#n, 2 < n < 10. As the measure
does not meet the value commensurability criterion C3.1, this information is of limited importance.
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COMPARISON PROCEDURE:

Corresponding ICV components are subtracted, the differences forming an Interval-
difference vector (IdV).29 The average of the IdV components is subtracted from each
IdV component. The differences are squared and added together, the sum being di-
vided by the length of the IdV, six. The final IcVSIM value is the square root of the
quotient.30

EQUATION:
Given SCs X and Y and their vectors ICV(X) and ICV(Y), respectively, the Interval-
difference vector is:

IdV = [(y1-x1)(y 2-x2)-..(y 6-x6)]-
The value of the function IcVSIM(X,Y), then, is the degree of variance in the compo-

nents of the IdV, measured with the standard deviation function ¢. Defined in terms
of the IdV, this function is:

where IdVj is the ith component in the IdV and Idv the average of the components
in the IdV (Isaacson 1990:18).

EXAMPLE 3.25: IcVSIM(6-1,3-1). Prime forms, ICVs and IdV.31

6-1: {0,1,2,3,4,5}, [5 4 3 2 1 0]
3-1: {0,1,2}, [2 1 00 0 0]
Igv [3 3 3 2 1 0}

IcVSIM(6-1,3-1)=

\/(3—2)2+(3—2)2+(3—2)2+(2—2)2+(1—2)2+(0—2)2
6

=\/l+l+lzo+l+4=\/§=l‘15

29 The order in which the two ICVs are taken does not affect the final result.

30 Isaacson's glossary entry for IcVSIM in (1992:255) is incorrect, suggesting that the square root of
the sum of the squared differences is taken before the division.

31 The example is from Isaacson (1992:75-6).
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EVALUATION CRITERIA FULFILLED:
C1,C2,C34.

THE ICVSIM VALUE GROUP #2-#12/#2-#12: 32

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 0. Value indicating highest degree of dissimilarity: 3.64. Average: 1.2.
Number of distinct values: 121. If #X = #Y, IcVSIM(X,Y) = IcVSIM(X C,Y(C). If #X #

#Y, IcVSIM(X,Y) may or may not be IcVSIM(XC ,YC).

TABLE 3.7: The IcVSIM value groups #n/#m, 3 <n,m < 9. Within a given value group, lower values
indicate higher degrees of similarity. Each table cell contains, clockwise from the top left: the lowest
and highest values, the number of distinct values, the average.

43
0.58 1.53
#3[9 93 7 #4
0.5 2.14/0.0 2.24
#4999 13 |1.12 15 85
4s|0-37 2.19]0.47 2.75[0.0_ 2 45
1,03 15 [1.11 19 [1.13 19 #6
4c|0-0 3.06[0.5 3.55[0.37 3.25[0.0 346
1.14 21 |1.2 28 |1.18 29 [1.25 31 #7
47|0-58 2.24[0.5 2.81[0.37 2.54[0.0 3.32(0.0 2.45
1.17 14 |1.2320 [1.1719 J1.2 29 [1.13 19 48
4g|0-37 2.11]0.47 2.45[0.0 2.77/0.37 3.58(0.37 2.73(0.0 2.24
1.28 14 [1.32 19 |1.24 21 |1.24 29 [1.12 20 [1.12 15 #9
4o|0-76 2.14]0.58 2.71]0.47 2.49[0.5 3.25(0.5 2.29[0.47 2.25(0.58 1.53
1.42 13 |1.4420 |1.3¢418 1.3 22 [1.1215 [1.0315 |0.93 7

3.65.1 Analysis

Although not initially conceived as such, IcVSIM turns out to be a scaled version of
Teitelbaum's s.i. measure. In (1992:76) Isaacson defines also the latter in terms of the

interval-difference vector. Ex. 3.26.

EXAMPLE 3.26: The s.i. measure defined in terms of the IdV.

6
s.i (X, Y) = szxdviZ
i=1

Instances of the lowest IcVSIM value, 0, are produced by Z-related SCs, as well as by

32 As the measure does not meet the value commensurability criterion C3.1, this information is of
limited importance.
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a group of SC pairs with non-identical ICVs but with level IdVs.33

EXAMPLE 3.27: ICVs and IdV of the set-classes 6-30 and 3-10.

ICV(6-30) = [2 2 4 2 2 3]
ICV(3-10) = [0 0 2 0 0 1]
Iav [2 2 2 2 2 2]

As the standard deviation function returns the value 0 for this interval-difference
vector, IcVSIM(6-30,3-10) = 0.

The most important difference between IcVSIM and Teitelbaum's s.i. is that
the former allows comparisons between SCs of different cardinalities, and the latter
does not. Among the similarities is the shared inability to meet the crucial criteria
C3.1 and C4 (calling for a a single scale of values for all comparisons and a uniform
value for all comparable cases, respectively).

To examine the relation between IcVSIM and C4, let us compare again a
number of SC pairs. Some of these were already compared with s.i. in Ex. 3.17.

EXAMPLE 3.28: Interval-class vectors of six triad classes.

ICV(3-1) = [2 1 0 0 0 0]
ICV(3-10) = [0 0 2 0 0 1]
ICV(3-11) = [0 01 11 0]
ICcv(3-12) = [0 0 0 3 0 01
ICV(3-9) = [01 00 2 0}
ICV(3-7) = [0110 1 0]

The interval-class contents of the pairs {3-1,3-11}, {3-1,3-10} and {3-1,3-12} are dis-
joint. Despite this, the values for the three comparable pairs are different.
IcVSIM(3-1,3-11) = 1.15; IcVSIM(3-1,3-10) = 1.29; IcVSIM(3-1,3-12) = 1.53. The reason
for the varying values is the squaring of the IdV differences. IcVSIM rewards pairs
with even distribution of unilaterally embedded ic instances, although the whole
notion has no meaning from the point of view of the number of mutually embedded
ones. (Section 2.4.3). Altogether, there are 25 SC pairs such that both classes are of
cardinality 3 or larger and their ic contents are disjoint. To these pairs IcVSIM
returns 10 different values, ranging from 1.15 to 2.14.

Furthermore, set-classes with partially shared ic contents with 3-1 may have
as high IcVSIM values with it as SCs with disjoint ic contents. IcVSIM(3-1,3-9) =
IcVSIM(3-1,3-11) = 1.15, even though k(3-1,3-9) = 1(2) and k(3-1,3-11) = 0(2). Here, as

33 The latter pairs are given in Isaacson (1990:27-8 n 16).
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with s.i., the reason is the component 2 in ICV(3-9). (Section 3.6.1.1). The pair
{3-1,3-7}, in turn, is comparable with {3-1,3-9}, as in both the SCs share an instance of
ic2. The two IcVSIM values are different, 1.0 and 1.15, respectively. The non-shared
instances are distributed more evenly in ICV(3-7) than in ICV(3-9).

Another important feature of IcVSIM has to do with a notion we discussed in
section 2.5: the status of a zero component in a vector. See Ex. 3.27 above, with the
comparison IcVSIM(6-30,3-10). The two SCs were deemed maximally similar. From
an arithmetical point of view it is correct to state that the distance from 2 to 0 is the
same as the distance from 4 to 2 or from 3 to 1. From the point of view of the two ic
contents, however, it is not so. Given the pairs of corresponding components 4,2 and
3,1, we compare something that exists to something that also exists. In the 2,0 case,
by contrast, we compare something that exists to something that does not. Here only
the component exists, not the corresponding ic. There is no "distance" from a non-ex-
istent ic instance to some number of existing instances. Interval-classes 1, 2, 4 and 5
do not contribute anything to 3-10, but they contribute more than half to the ic con-
tents of 6-30. The two contents are highly different.34 IcVSIM measures similarity be-
tween the contours of two ICVs (Rogers 1992).35

On the basis of the analysis above we must conclude that IcVSIM is an unreli-
able similarity measure. It is to be noted, however, that in cases where the ICVs con-
tain only nonzero components, it can produce intuitively acceptable results. Ex. 3.29
gives the vectors of a maximally similar pair. IcVSIM(7-22,6-Z19) = 0.

EXAMPLE 3.29: ICVs and IdV of set-classes 7-22 and 6-Z19.

ICV(7-22) = [4 2 4 5 4 2]
ICV(6-219) = [3 1 3 4 3 1]
Iav [1 1111 1]

The value corresponds meaningfully with the close distributional similarity between
the two ICVs. %REL2(7-22,6-Z19) = 6.

According to Isaacson, an important strength of IcVSIM is that it is able to
show fine gradatibns of similarity, a property he thinks many other relations lack
(Isaacson 1990:22). He offers no arguments to support the claim that a fine gradation

34 9, REL(6-30,3-10) = 53.

35 In (1992:126-34) Isaacson gives an expanded version of IcVSIM, called EmbSIM. It is otherwise
identical to IcVSIM, except for using 220-index total-embedding vectors (TeVs) that record all subset-
class instances in a SC. As a great majority of components in TeVs of small-cardinality SCs are zeros,
highly similar contours are guaranteed. The distortion that the flawed zero component status causes
in IcVSIM is in much larger proportions in EmbSIM. According to Isaacson, EmbSIM is inadequate as
a general measure of pcset similarity (Ibid., 131).
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is an advantage. (Section 2.4.2.4).

3.6.6 Rogers: Distance Formula 1 (IcVD1)

A modification of Morris's SIM measure. Presented in Rogers (1992). A similarity
measure pairing interval-class instances by one-to-one correspondence.

COMPARISON PROCEDURE:

In both ICVs, each component is divided by the sum of all components in the vector.
The absolute values of the differences between corresponding quotients are added
together.

EQUATION:

6

. Vs
ICVD1(X,Y) = ¢
VD1CY) 12;1 #ICV(X)  #1CV(Y)

EXAMPLE 3.30: IcVD1(3-1,4—19).36 Prime forms, ICVs, sums of components and scaled interval-class
vectors.

3, [2/31/3 0 0 0 0]

3-1: {0,1,2}, ‘
6, [1/6 0 1/6 3/6 1/6 0]

[2 1000 0], #ICV(3-1)
4-19: {0,1,4,8}, [1 0 3

1 0], #ICVv(4-19)

IcVD1(3-1,4-19)= |2/3-1/6|+|1/3-0|+]0-1/6|+]0-3/6|+]0-1/6]+|0-0]

= 3/6 + 2/6 + 1/6 + 3/6 + 1/6 + 0 = 10/6 = 5/3 = 1.67.

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C3.4,C4.

THE ICVD] VALUE GROUP #2-#12/#2-#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 0. Value indicating highest degree of dissimilarity: 2. Average: 0.59.
Number of distinct values: 140. IcVD1(X,Y) may or may not be kcVD1(XC,Y(C).

36 Examples 3.30, 3.31 and 3.33 are from Rogers (1992).



68  Chapter 3

TABLE 3.8: The IcVDj value groups #n/#m, 3 < n,m < 9. Lower values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
0.67 2.0
#3|y 36 3 #4
0.0 2.0 [0.0 1.67
#ly 177 lo.9 6 #5
4s5|0.27 1.8 (02 16 [0.0 1.2
1.14 15 lo.78 20 |0.54 7 #6
4|027 1.73[0.2 1.6 [0.0 1.2 (00 12
1.14 12 |0.73 20 |o0.49 18 |0.41 10 #7
47|0-57 1.71[0.14 1.52[0.08 1.14[0.08 1.14[0.0 0.57
1.13 13 |0.69 26 l0.43 50 |0.35 40 |0.26 7 48
yg|0-71 1.71[0.12 1.5 [0.13 1.14[0.08 1.14[0.0 0.57(0.0 0.36
1.14 15 |o0.67 42 |0.4251 lo.3358 |0.24 21 [0.196 #9
4o|0-83 1.67[0.11 1.5 [0.13 1.11[0.1 1.11]0.07 0.54[0.07 0.36[0.06 0.17
1.13 14 |o.64 23 0.4 44 |0.32.41 o0.21 30 [0.17 22 Jo.11 3

3.6.6.1 Analysis

IcVD1 is a similar modification of SIM as %REL2 is of sf. In both IcVD1 and %REL?2,
vector components are scaled before the absolute values of the differences are added
together. In %RELY, each component is also multiplied by 100 after being divided by

the component sum, and the sum of the absolute values is divided by 2.
Consequently, %REL2(X,Y) = 50*IcVD1(X,Y). (Tables 3.2 and 3.8). Since %REL2 val-

ues are rounded, a value group in Table 3.2 may contain fewer distinct values than

the corresponding value group in Table 3.8.
Due to the straight correlation between %REL2 and IcVD1, observations con-

cerning the former are valid also for the latter. See sections 3.4.2 and 3.6.2.2.

3.6.7 Rogers: Distance Formula 2 (IcVD2)

A modification of Morris's SIM measure. Presented in Rogers (1992). A similarity
measure pairing interval-class instances by one-to-one correspondence.

COMPARISON PROCEDURE:
In both ICVs, each component is divided by the square root of the sum of the

squares of the components. Differences between corresponding quotients are
squared and added together. The final result is the square root of the sum.
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EQUATION:

2

IcVD2(X,Y) =

z Xi _ Yi
2 2
V(1) |3 (v1)
EXAMPLE 3.31: IcVD2(3-1,4-19). Prime forms and ICVs.

3-1: {0,1,2}, [2
4-19:{0,1,4,8}, [1

VE(x)? =22+1%+0 +0 +0 +0 =5
\/2(y1)2=12+o +12+432+12+0 =12

IcVD2(3-1,4-19) =

o

) o) o o) e

=/0.6062+0.4472+(=0.289)2 +(~0.866)2+(~0.289)2 + 02

=+/1.483 =1.218

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C34.

THE ICVD2 VALUE GROUP #2-#12/#2-4#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 0. Value indicating highest degree of dissimilarity: 1.41. Average: 0.54.
Number of distinct values: 133. IcVD2(X,Y) may or may not be IcVD2(XC,YC).
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TABLE 3.9: The IcVD3 value groups #n/#m, 3 < nm < 9. Lower values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
0.67 1.41
#3411 10 #4
0.0 1.41]0.0 1.33
#4190 95 42 |0.83 52 #5
45[0.27 1.3 [0.19 1.3 [0.0 109
0.89 58 |0.71 76 ]0.59 59 #6
4c|0-27 1.3 [0.19 1.3 0.0 1.05[0.0 1.0
0.87 63 |0.67 90 |o0.52 87 |0.45 63 #7
47|0-43 1.17]0.14 1.16/0.1 0.54[0.08 0.54[0.0 0.64
0.85 52 |o0.64 79 |o.46 70 J0.38 75 |0.31 37 #8
4g|0-53 1.16/0.16 1.08(0.14 0.54/0.08 0.94/0.0 0.64/0.0 0.46
0.84 44 |0.62 74 |0.44 66 |0.3572 |0.27 50 |0.23 24 #9
49|0-63 1.1 [0.16 1.06/0.18 0.870.12 0.87|0.05 0.53[0.07 0.41]0.05 0.25
0.84 29 |0.6258 |0.4351 |0.3353 0.2435 [0.1931 [o.157

3.6.7.1 Analysis

The (theoretical) maximum value is the same for all value groups, 1.41. As IcVD2
meets the value commensurability criterion C3.1, all values in Table 3.9 can be com-
pared with one another without difficulty. IcVD2 has the same defect as s.i. and
IcVSIM, however. It fails C4, the criterion calling for a uniform value for all compa-
rable cases. The reason is also the same, i.e., the components are squared during the
calculation.

Ex. 3.32 contains the ICVs of eight triad classes. The classes form six compa-
rable pairs, given below. All have the uniform k value 1(2). Other factors differ:
some ICVs are relatively peaked, others level; the corresponding nonzero compo-
nents may be of the same or different sizes; etc.

EXAMPLE 3.32: Interval-class vectors of eight triad classes.

ICV(3-1) = [2 10 0 0 0]
ICV(3-2) = [1110 0 0]
ICV(3-3) = [10110 0]
ICV(3-6) = [02 01 0 0]
Icv(3-8) = [01010 1]
ICV(3-9) = [010 0 2 0]
ICV(3-11) = [0 0 1 1 1 0}
ICV(3-12) = [0 0 0 3 0 0]
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IcVD2(3-11,3-12) = 0.92; IcVD2(3-1,3-3) = 0.98; IcVD2(3-6,3-12) = 1.05; IcVD2(3-2,3-8)
= 1.15; IcVD2(3-1,3-8) = 1.22; IcVD2(3-1,3-9) = 1.26. The value is different for every
pair. The value group #3/#3 for IcVD 2 contains instances of 10 values. (Table 3.9).
As mentioned earlier, from the viewpoint of mutually embedded ic instances there
are only three categories available for the comparison group #3/#3.

3.6.8 Rogers: COS6

Cosine Theta. Presented in Rogers (1992). A similarity measure pairing interval-class
instances by one-to-many correspondence.

COMPARISON PROCEDURE:
The sum of the products of corresponding components is divided by the product of
the square roots of the sums of the squares of the components.

EQUATION:
> Xi*Y4

V= ()P T (vs)?

EXAMPLE 3.33: cos8(3-1,4-19). Prime forms and ICVs.

cos0 (X)Y) =

3-1: {01112}1
4—19:{0111418}1

VE(x)? =22+12+0 +0 +0 +0 =5
VE(ri) =12+0 +12+3241240 =v12

cos®(3-1,4-19) = [(2*1)+(1*0)+(0*1)+(0*3)+(0*1)+(0*0)] = 2 = 0.258
V5 * V12 V60

1 0
0 3

—

[2 0 00
[1 1 10

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C34.

THE COS6 VALUE GROUP #2-#12 /#2-#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 1. Value indicating highest degree of dissimilarity: 0. Average: 0.81.
Number of distinct values: 92. cosf(X,Y) may or may not be cos8(XC,YC).
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TABLE 3.10: The cos6 value groups #n/#m, 3 < n,m < 9. Higher values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
0.0 0.77
#3|9 36 10 #4
0.0 1.0 [0.12 1.0
#4o 51 44 |0.63 54 #5
45|0-15 0.96[0.15 0.98[0.41 1.0
0.58 53 |0.72 66 |0.81 45 #6
4c|0-15 0.96[0.15 0.98[0.41 1.0 [0.5 1.0
0.61 59 |0.75 65 |0.85 52 |o.88 43 #7
47|0-31 0.91]0.32 0.95/0.56 1.0 [0.56 1.0 [0.79 1.0
0.6350 |0.78 58 |o.88 41 [0.92 37 |0.95 20 48
45| 0-33 0.86[0.41 0.95/0.56 0.55[0.56 1.0 [0.79 1.0 [0.5 1.0
0.633% |0.7951 |0.8935 l0.9335 |0.96 15 [0.97 11 #9
4o|0-4 0.8 [0.44 0.95[0.62 0.58(0.62 0.55[0.86 1.0 [0.92 1.0 [0.97 1.0
0.64 26 |0.79 41 |o.9 29 lo.94 24 [0.97 13 [0.98 9 [o0.99 4

3.6.8.1 Analysis

Cos9 is the first one-to-many correspondence measure we examine. It was seen in
section 3.2 that the one-to-one correspondence measures observe similarities be-
tween instance distributions. Obviously, taking the product of corresponding com-
ponents does not answer distributionally oriented questions, like "how many mu-
tually embedded ic instances are there?" A single product can result from many dif-
ferent component pairs. Rather, the values indicate "extents of pairedness” between
two SCs, a notion not necessarily correlating with distributional similarity.

Ex. 3.34 gives four SC pairs containing the SC 3-11. We will first examine
three of them, {3-11,3-2}, {3-11,3-9} and {3-11,3-12}.

EXAMPLE 3.34: Four pairs of ICVs belonging to triad classes.

ICV(3-11) = [0 0 1 1 1 O] ICV(3-11) = [ 11 1
ICV(3-2) = [1110 0 0] ICV(3-9) = {0100 2 0]
ICV(3-11) = [0 0 1 1 1 0] ICV(3-11) = [0 0 1 1 1 0]
ICV(3-12) = [0 0 0 3 0 O] ICV(3-6) = [0 201 0 0]

Cos6(3-11,3-2) = 0.33; cos0(3-11,3-9) = 0.52; cos6(3-11,3-12) = 0.58. In each case, only
one pair of corresponding components is mutually nonzero, resulting in a product
larger than zero. In the first case, one ic instance in 3-11 corresponds to one in 3-2.
Then, one instance in 3-11 corresponds to two in 3-9 and, finally, one in 3-11 to three
in 3-12. The values increase with the products, reflecting the fact that the number of
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instance pairings between the SCs increase. A one-to-one correspondence measure,
by contrast, would produce a uniform value. The number of mutually embedded ic
instances is the same in every case, one.

Cos@ does not meet C4, the criterion calling for a uniform value for all compa-
rable cases. The divisor term \/Z(xi)2 ¥ \IZ(yj)z, needed to scale the values between 0
and 1, treats peaked and level vectors differently. Once again, the reason is in the
squaring of the components. Let us examine the fourth set-class pair in Ex. 3.34,
{3-11,3-6}. Cos6(3-11,3-6) = 0.26, a value lower than 3-11 produced with 3-2.
However, in both cases the product of the only pair of mutually nonzero compo-
nents is the same, 1. ICV(3-6) contains a larger component than ICV(3-2), resulting in
a larger divisor and a lower value. Due to the relation with C4, we will not use cos6
to analyse the differences between one-to-one and one-to-many correspondence

measures.

3.6.9 Rahn: The Ak Measure

Absolute (Adjusted) k measure. A modification of Morris's k measure (k number).
Presented in Rahn (1979-80). A similarity measure pairing interval-class instances by
one-to-one correspondence.3”

COMPARISON PROCEDURE:

The smaller components in each pair of corresponding ICV components are added
together. The sum is multiplied by two and divided by the total number of ic in-
stances in the two ICVs.

EQUATION:

ak(X,Y) = 2% k(X,Y)
’ # ICV(X)+# ICV(Y)

EXAMPLE 3.35: ak(5-1,5-16). Prime forms and ICVs.38

2* k(5-1,5-16) = 12. #ICV(5-1) + #ICV(5-16) = 20. ak(5-1,5-16) = 12/20 = 0.6.

37 Rahn uses the name ak(A,B). The name ak measure is adopted here.
38 The classes in Ex. 3.35 are the same as in the k measure example 3.1. From Rahn (1979-80).
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EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C34, C4.

THE AK VALUE GROUP #2-#12/#2-#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 1. Value indicating highest degree of dissimilarity: 0. Average: 0.58.
Number of distinct values: 78. ak(X,Y) may or may not be ak(XC,YC).

TABLE 3.11: The ak measure value groups #n/#m, 3 <n,m < 9. Higher values indicate higher degrees
of similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
0.0 0.67
#319.32 3 #4
0.0 067(0.17 1.0
#4424 lo0.556 #5
4s5|0.15 0.460.25 0.75[0.4_ 1.0
0.4 3 Joel15 J0.737 #6
4c|0-11 0.33[0.19 0.57[0.32 0.8 [0.4 1.0
0313 Josas Jo.72e6 lo.s 10 #7
47|0-25 0.25[0.3 0.44[0.45 0.65[0.5 0.83[0.71 1.0
0251 l0o.4a3 Jloesa lo7oe |0.877 #8
45|0-19 0.19]0.35 0.35[0.53 0.53[0.51 0.7 [0.65 0.86[0.82 1.0
0.191 Jo.351 Jos531 Jo.ess Jo.eas Jo.9 6 #9
4o|0-15 0.15]0.29 0.25[0.43 0.43[0.59 0.550.74 0.740.78 0.87(0.52 0.57
0151 o291 lo.a31 Joss1 Jo.7a1 Jo.s6 4 0.94 3

3.6.9.1 Analysis

The correlation between k and SIM values was given formally in section 3.4.1.1
above. Predictably, there is also a correlation between the values produced by the
adjusted versions ak and ASIM. For every SC pair {X,Y},

(1) ASIM(X,Y) = (1 - ak(X,Y)).
(2) ak(X,Y) = (1 - ASIM(X,Y)).39

The correlation becomes evident from comparing the ASIM value group information
table 3.5 to the ak Table 3.11. The numbers of distinct values are identical between
corresponding value groups. Also, the sum of corresponding average values is 1,
and the sum of a minimum value in one table and the corresponding maximum

39 Isaacson (1992:45).
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value in the other is also 1, with a few small exceptions due to rounding. It is also
because of rounding that the total numbers of distinct values differ slightly between
the two measures, being 79 for ASIM and 78 for ak.

The ak measure has an advantage over k in that it provides a single scale of
values for all comparisons. However, it also shares the disadvantages of k, SIM and
ASIM: a poor degree of discrimination in many comparison groups, as well as in-
sensitivity to similarity between ic content profiles. (Section 3.6.2.2). Normalising k
values into ak values is done at the same stage as the normalisation of SIM values
into ASIM values, as the last step. Consequently, the values are scaled, but the other
counterintuitive features remain. Comparisons between tables 3.1, 3.4, 3.5 and 3.11
show that the uniform-valued value groups are exactly the same for k, SIM, ASIM
and ak.

3.6.10 Rahn: MEMBnp

Mutual Embedding . Presented in Rahn (1979-80). A similarity measure pairing sub-
set-class instances by one-to-many correspondence, one subset-class cardinality at a
time.

COMPARISON PROCEDURE:

Corresponding n-class vector components are added together if both are nonzero.
The final value is the sum of all such component pair sums.

EQUATION:40
Given SCs X and Y, cardinality-class n, #X#Y > n, and the value of the function
EMB(A,X), being the number of instances of SC A in X,

MEMBq(X,Y) = EMB(A,X) + EMB(A,Y)

for all A in n so that EMB(A,X) > 0 and EMB(A,Y) > 0.

40 Rahn uses the expression MEMBR(A,X,Y). We will use the shorter expression MEMBp, (X,Y) to
have a uniform notation for all measures and argument SCs.
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EXAMPLE 3.36: MEMBg(4-17,5-7). Prime forms and 2CVs.41

4-17: {0,3,4,7}, [1 02210]
5-7: {0,1,2,6,7}, 131 01 3 2]
MEMB2 (4-17,5-7) = 4 + 3+4 = 11

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.3,C3.4,C4.42

THE MEMB; VALUE GROUP #2-#12/#2-#12:43
All values are integers. Value indicating highest degree of similarity: 121. Value in-

dicating highest degree of dissimilarity: 0. Average: 30. Number of distinct values:
79. MEMB2(X,Y) may or may not be MEMB2(XC,YC).

TABLE 3.12: The MEMB) value groups #n/#m, 3 < n,m < 9. Within a given value group, higher val -
ues indicate higher degrees of similarity. Each table cell contains, clockwise from the top left: the
lowest and highest values, the number of distinct values, the average.

43
0 5
#3532 5 #4
0 9 |3 12
#4722 9 |8.38 10 #5
us| 3 13[4 16 |8 20
7.11 11 |12.65 12 | 18.44 11 #6
uel 2 18 [5 21 [10 25|12 30
9.39 13 |16.45 16 [23.57 13 [29.16 11 #7
url © 18 |11 27 |19 31 |24 36 |42 42
12.08 13 |20.95 17 [29.4 12 ]35.43 11 {42.0 1 48
usl 7 21 |13 34 |22 38 |27 43 |49 49 |56 56
15.07 15 | 25.91 20 | 35.84 13 [42.23 13 [45.0 1 |S6.0 1 #9
e 24 |15 42 |26 46 |31 51 |57 57|64 64|72 72
18.56 14 |31.63 22 | 43.26 11 [50.02 11 |57.0 1 Jea.0 1 |72.0 1

41 After Isaacson (1990).

42 The relation between C4 and MEMB, differs from that between C4 and the measures based on
one-to-one correspondence. A uniform number of shared ic instances, our usual requirement, is in-
applicable since the formula calls for observing something else than this. MEMBy, is its own criteria
for C4. Every SC pair in a comparison group with a uniform sum of mutually nonzero component
pair sums gets a uniform value. Other vector characteristics do not affect the result.

43 As the measure does not meet the value commensurability criterion C3.1, this information is of
limited importance.
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3.6.10.1 Analysis

Rahn does not discuss the status of MEMBp, in (1979-80), but it is probably just a
preliminary version of the total measure TMEMB, presented only to describe the ba-
sic approach in a simple manner (Isaacson 1990:27 n 8). TMEMB, in turn, leads to
ATMEMB, the version normalising TMEMB values between 0 and 1. That ATMEMB
is Rahn's final goal seems evident from the fact that both MEMBp and TMEMB fail
to produce a uniform scale of values for all value groups, a defect Rahn identifies
and wants to avoid (Rahn 1979-80:493). The inability to meet C3.1 is corrected in
ATMEMB.

Let us compare again the same four SC pairs as in section 3.6.2.2 above,
namely 3-5 with each of the SCs 4-9, 4-6, 4-5 and 4-Z15. The 2CVs are given in Ex.
3.37.

EXAMPLE 3.37: The 2-class vectors of five SCs.

2Cv(3-5) = [100011]
2Cv(4-9) = [2 000 2 2]
2Cv(4-6) = [2 100 2 1]
2CV(4-5) = [2 101 11]
2CV(4-7Z15) = [1 1111 1]

MEMB2(3-54-9) = 9; MEMB2(3-5,4-6) = 8; MEMB2(3-5,4-5) = 7, MEMB2(3-54-Z15) =
6. The decreasing intuitive similarity between the SCs in the four pairs corresponds
with the decreasing values. In the ICVs, the number of component pairs containing
both a zero and a nonzero element increases, and these pairs do not contribute to the
outcome. The problem of SIM, i.e., insensitivity to the similarity between ic content
profiles, is avoided here.

This does not indicate, however, that the problem would be avoided in every
case. When the n-class vectors of SCs X and Y contain only nonzero components, all
pairs of corresponding components fulfil the condition of containing only nonzero
elements and contribute to the MEMBp value. In these cases, MEMBRr(X,Y) =
#nCV(X) + #nCV(Y). For example, as all 2CVs belonging to SCs of cardinality 7 or
higher contain only nonzero components (Forte 1973a:20), all comparison groups
#n/#m such that n, m 2 7 will produce uniform-valued MEMB? value groups.
(Table 3.12). In these cases the ic characteristics of the compared SCs lose their
meaning entirely. And even if a given value group contains instances of more than
one value, the value distribution may suggest a very poor resolution. In the MEMB2

value group #6/#6, for example, almost three quarters of the values are instances of
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30, the value indicating maximal similarity. The average value is 29.16.

3.6.10.2 MEMBp and the One-to-One Correspondence Measures

In section 3.2 we examined the notion of one-to-many correspondence with an ex-
ample observing the number of pairings. In MEMBp, the viewpoint to one-to-many
correspondence is slightly different. Suppose we have some SCs X and Y, containing
one and five instances of some subset-class S, respectively. The sum, six, is distant
from one of the components, and could have been produced by component pairs
{2,4} and {3,3} as well. A single sum, like a single product, can reflect many degrees
of distributional (one-to-one correspondence) similarity. When the sole instance of S
in X is paired with each of the five instances in Y, the sum is not an answer to the
question "how many pairings are there?" The answer to that is 5, requiring multipli-
cation. Rather, the question is, "how many instances of S participate in a pairing?"

In MEMB, each sum of mutually nonzero components is twice the arithmetic
mean (average) of the components (Lewin 1979-80b:500). When using the one-to-one
correspondence measures, we focus on component size differences. In MEMBp, we
pool instances belonging to mutually represented subset-classes together.

Let us examine how MEMBp, fares with the one-to-one correspondence mea-
sures. We shall first compare the dyad class contents of two pairs, {3-3,3-8} and
{3-3,3-12}. The prime forms, 2CVs and 2C%Vs of the classes are given in Ex. 3.38
below.

EXAMPLE 3.38: Prime forms, 2CVs, and 2C%Vs of three SCs

3-3: {0,1,4} [1 0110 0] [33 033 330 0]

3-8: {0,2,6} [01 010 1] [0 33 0 33 0 33]

3-12: {0,4,8 [0 003 00] [O O O 100 0 O]
First, let us set our focus on one-to-one correspondence, and, consequently, on simi-
larities between instance distributions. We see that the dyad class contents of the
SCs are rather different, but have one aspect in common. All contain at least one in-
stance of the dyad class 2-4. When we pair the instances by one-to-one correspon-
dence, we see that some of them remain without counterparts in both SC pairs.

In the pair {3-3,3-8}, the non-paired instances belong to 2-1 and 2-3 in the for-
mer triad class, to 2-2 and 2-6 in the latter. The first dyad class pair is not contained
at all in the second triad class, and vice versa. In the pair {3-3,3-12}, the situation is
similar with 3-3 but different with 3-12. In the latter, the two non-paired instances
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belong to the dyad class 2-4 that is represented also in 3-3.

From the point of view of one-to-one correspondence, it does not matter that
the non-paired instances in a sense represent two different categories. The number
of shared instances is one in both cases. Consequently, if we compare the pairs with
SIM and %RELD, the measures produce uniform values. SIM(3-3,3-8) = SIM(3-3,3-12)
= 4. %REL2(3-3,3-8) = %REL2(3-3,3-12) = 67.

If we then compare the same pairs with MEMB?, the values are different and
suggest closer similarity to the latter pair. MEMB2(3-3,3-8) = 2, MEMB2(3-3,3-12) = 4.
The results seem intuitively acceptable. The number of 2-4 instances participating in
a pairing is higher in the latter pair. From the one-to-one correspondence viewpoint
we would say that in {3-3,3-8}, the non-paired instances are completely unrelated,
whereas in {3-3,3-12} half of them, the two 2-4 instances in 3-12, are related to the
paired instances. The entire dyad class contents of 3-12 contribute to the similarity
between it and 3-3. Here, in terms of correlating measured values with intuitive
similarity, it seems that MEMB2 has an edge over the one-to-one correspondence

measures.

EXAMPLE 3.39: Prime forms, 2CVs and 2C%Vs of four SCs

4-1: {0,1,2,3}, [3 210 0 0], [50 33 17 0 0 0]
4-28: {0,3,6,9}, [0 0 4002], [ O 067 0 0 331
4-3: {0,1,3,4}, [2 12 100], [33 17 33 17 0 0]
4-9: {0,1,6,7}, [2 0 00 2 2], [33 0 O O 33 33]

Ex. 3.39 gives two more pairs, {4-1,4-28} and {4-3,4-9}. SIM and %REL? deem 4-1
and 4-28 highly dissimilar. The two values, SIM(4-1,4-28) = 10 and %REL2(4-1,4-28)
= 83, are instances of the highest values in their value groups. Both measures sug-
gest closer similarity to the latter pair. SIM(4-3,4-9) = 8, %REL2(4-3,4-9) = 67. 4-1 and
4-28 have one instance of 2-3 in common, 4-3 and 4-9 two instances of 2-1.

According to MEMB2, the first pair represents a higher degree of similarity
than the second. MEMB2(4-1,4-28) = 5, MEMB2(4-3,4-9) = 4. The number of paired
dyad class instances is higher in the former case than in the latter.

Unlike the case in Ex. 3.38, MEMB? seems now to produce values contradict-
ing the intuitive sense of similarity. The dyad class contents of 4-28 contain instances
of only two classes, one of them, 2-3, having a stronger representation than any
- other dyad class in any other 4-pc class. This exceptional concentration is in all like-
lihood a factor distancing 4-28 from other classes, not one bringing it closer to them.
4-3 and 4-9 do not share a majority of their dyad class contents either, but the extent
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of similarity they have seems to result from the fact that the two instances of 2-1 in
the former are matched by as many in the latter.

We could examine many more SC pairs besides those in examples 3.38 and
3.39, but our point is already evident. One-to-one correspondence measures are in-
sensitive to non-paired instances of subset-classes that are represented in both SCs.
MEMB», in turn, is insensitive to similarities between instance distributions. The
strength of the one approach is precisely the weakness of the other.

3.7 THE TOTAL MEASURES
3.7.1 Rahn: TMEMB

Total Mutual Embedding. An expanded version of the MEMBp, measure. Presented in
Rahn (1979-80). A total measure pairing subset-class instances by one-to-many cor-
respondence.

COMPARISON PROCEDURE:
TMEMB(X,Y) is the sum of all MEMBn (X,Y) values, n ranging from 2 to the lesser of

#X, #Y.

EQUATION: 44
12
TMEMB(X,Y) = 3 MEMB, (X, Y)

n=2

EXAMPLE 3.40: TMEMB(5-7,5-15). The prime forms are {0,1,2,6,7} and {0,1,2,6,8}, respectively. As the
cardinality of both SCs is five, the value of TMEMB(5-7,5-15) is MEMB2(5-7,5-15) + MEMB3(5-7,5-15)
+ MEMB4(5-7,5-15) + MEMB5(5-7,5-15). Both 5CV(5-7) and 5CV(5-15) will contain only one nonzero
component, 1, in the index corresponding to the class itself. Sums of component pairs containing ze-
ros are not shown.

2CV(5-7) = [3 1013 2] 3Cv{5-7) =[100250011000]
2CV(5-15) = [2.2 0 2 2 2] 3CV(5-15) = [1L 00220042100 0]
MEMB3 (5-7,5-15)= 5+3 + 3+5+4=20; MEMB3(5-7,5-15) = 2 + 47 + 542 =20
4cv(5-7) =[0000110110000001000000000000C0C 0]
4CV(5-15) = [0 0 00 2 00000000O00C2000000001000 Q0]
MEMB4 (5-7,5-15) = 3 + 3 =6

44 The equation, given in Rahn (1979-80:492), sets the upper subset-class cardinality limit at 12.
According to Rahn this is harmless, as there are no mutually embedded subset-classes of cardinalities
greater than the lesser of #X and #Y.
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5CV(5-7) =[0 0
5CV(5-15)=(0 0
MEMB5 (5-7,5-15)

00 0 000 000 00 00
00 1 000 000 00 00

0 010000000 00000 00000 0 00
0 000000000 00000 00000GOC (0] 00

0

TMEMB(5-7,5-15) =20 + 20 + 6 + 0 = 46.

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.3,C4, C5.

THE TMEMB VALUE GROUP #2-#12/#2-4#12:4%

All values are integers. Value indicating highest degree of similarity: 6,118. Value
indicating highest degree of dissimilarity: 0. Average: 131. Number of distinct val-
ues: 877. TMEMB(X,Y) may or may not be TMEMB(XC,YC).

TABLE 3.13: The TMEMB value groups #n/#m, 3 <n,m < 9. Within a given value group, higher val -
ues indicate higher degrees of similarity. Each table cell contains, clockwise from the top left: the
lowest and highest values, the number of distinct values, the average.

#3
0 5
#3232 5 #4
0 14 |3 19
#4l5 3 13 |10.38 17 #5
3 20 | 4 33 |10 46
#3(g 49 15|18.1 29 [31.68 33 #6
ac| 2 31 |5 52 | 13 82 |16 103
11.81 19 | 26.15 40 |48.59 58 [74.84 66 #7
4| 31 |16 59 |32 102 45 164|112 228
15.93 20 | 36.35 42 |70.74 62 [113.97 96 |178.13 80 48
sal 7 32 |19 79 |39 152]52 255|173 366|266 468
20.71 22 |48.57 50 | 98.1 81 {162.15 124|263.81 136[389.39 116 #9
4o| 11 _ 37|22 95|63 182| 93 309(252 510|325 741735 980
26.56 17 | 64.12 56 | 134.93 76 |229.74 116]|389.07 117|589.75 135|897.76 38

3.7.1.1 Analysis

According to Rahn, MEMBR(X,Y) is naturally generalised to a measure of the total
mutual embedding in X and Y of subset-classes of all sizes greater than one (1979-
80:493). In cases where #X = #Y but X # Y, the #X-class vectors do not contribute
anything to the TMEMB value. Like MEMBp, TMEMB also produces different scales

of values for different value groups. (Table 3.13). Now that a large number of subset-

45 As the measure does not meet the value commensurability criterion C3.1, this information is of
limited importance.
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class instances of different cardinalities participate in the comparisons, the scales
vary to the extent that identification of comparable degrees of similarity, even ap-
proximately, may be very complicated. The extreme values in the value group
#3/#3, for example, are 0 and 5. In the group #5/#6 they are 13 and 82, in the group
#9/#9 739 and 980, etc.

There are no uniform-valued value groups, meaning that TMEMB can dis-
criminate between cases which MEMB? deemed equally similar. For example, it was
mentioned above that almost three quarters of the values in the MEMB? value group
#6/#6 are instances of the maximum value 30. When these uniform-valued cases are
compared separately with TMEMB, the resulting set of values ranges from 55 to 103,
containing instances of 45 distinct values.

As TMEMB and ATMEMB are expanded versions of MEMBp, we do not ex-
amine them separately as one-to-many correspondence measures. The observations
made in section 3.6.10.2 are valid also with respect to the two total measures.

3.7.1.2 TMEMB and Criteria C5 and C6

TMEMSB is the first total measure we examine. It can discriminate between Z-related
classes and, under Tn-classification, between inversionally related classes. In the fol-
lowing we will analyse aspects of the measure itself, not the values it produces. We
saw above that the latter are difficult to interpret due to TMEMB's inability to meet
the value commensurability criterion C3.1. The value analysis will be offered in con-
nection with the adjusted version ATMEMB.

Our present interests are connected to the discussion in section 2.5 above,
concerning the status of different subset-class cardinalities. We will use the compari-
son group #9/#9 as our example, obtaining its MEMB 8 and TMEMB value groups.
As thie value of each #9/#9 comparison MEMBg(X,Y) is both an independent result
and a part of the corresponding TMEMB(X,Y) value, we compare the two value
groups in order to assess what sort of impact the MEMBg values have in their
TMEMB counterparts. Also, we analyse what the results mean from the point of
view of the non-common subset-class criterion C6.

Among the 66 values in the MEMBg value group #9/#9, the lowest and high -
est values are 0 and 8, respectively. The average value is slightly less than 4. Ex. 3.41
gives the 8CVs of two SC pairs producing instances of the extreme values.
MEMBg(9-3,9-9) produces the minimum value, MEMBg(9-5,9-8) the maximum.
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EXAMPLE 3.41.a: MEMBg(9-3,9-9) = 0. The prime forms are {0,1,2,3,4,5,6,8,9} and {0,1,2,3,5,6,7,8,10},
respectively.

8CV(9-3)
8CV(9-9)

= 0
= 0
MEMBg (9-3,9-9) =

[0l 110010 0010010111000000000
{00 000100 0 0002020000022 00000

oo
O

EXAMPLE 3.41.b: MEMBg(9-5,9-8) = 8. The prime forms are {0,1,2,3,4,6,7,8,9} and {0,1,2,3,4,6,7,8,10},
respectively.

8Cv(9-5) =[0 000110110001011010000000000O0 1]
8Cv(9-8) =[0 0 0 01 0006000100131 000O031001103101]
MEMBg (9-5,9-8)= 2 + 2+2 + 2=8

In the TMEMB value group #9/#9, in turn, the lowest and highest values are 739
and 980, respectively. The average is approximately 898. The contribution of the 8-pc
subset-classes to the whole TMEMB outcome is very small indeed. Given all nonad
class pairs {X,Y}, there is not a single case where the MEMBg(X,Y) value would be a
full one percent of the corresponding TMEMB(X,Y) value.

We can draw two very different conclusions from this observation. On the
one hand, if we set out to count instances of mutually embedded octad classes, this
is exactly the outcome we will get. The minuscule octad class representations reflect
the subset-class properties of the nonad classes, not the properties of TMEMB. On
the other hand, if we set out to compare nonad classes with the help of the octad
classes included in them, we know that in a space of only 12 pitch-classes there is
simply no room for an 8-element object to be completely dissimilar from another 8-el-
ement object. They have to share something, and that something can be identified
and utilized when assessing the degree of similarity between them. Consequently,
two collections of octad classes may be disjoint, but still each element in one has
much more to do with the elements in the other than, say, two elements have in two
disjoint collections of dyad classes. That the "way of being disjoint" is not uniform
for small and large-cardinality subset-class contents is, of course, the very observa-
tion that gave rise to C6.

In Ex. 3.41.b, the mutually embedded octad classes are a meaningful indica-
tion of similarity between 9-5 and 9-8, but not the only one the octad classes can
provide. Conversely, in Ex. 3.41.a, the fact that 9-3 and 9-9 do not share any octad
classes does not mean that the octad class contents contribute to dissimilarity only.
For example, 8CV(9-3) contains an instance of 8-Z15 and 8CV(9-9) two instances of
8-16. If we compare these two octad classes separately with TMEMB, we find that
among the 406 values in the TMEMB value group #8/#8, the resulting value, 447, is
in the highest 4% of values. The maximum is 468, average 389. There are other
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cross-correlated octad class pairs getting almost as high values. For example,
TMEMB(8-2,8-22) = 444, TMEMB(8-4,8-14) = 440, etc. Even such a superficial glance
into the disjoint octad class contents reveals obvious similarities.

3.72 Rahn: ATMEMB

Absolute (Adjusted) Total Mutual Embedding. A modification of the TMEMB measure.
Presented in Rahn (1979-80). A total measure pairing subset-class instances by one-
to-many correspondence.

COMPARISON PROCEDURE:
Given SCs X and Y, the value of TMEMB(X,Y) is first taken. The number of all sub-

set-class instances of cardinality 2 or larger in X is found out and added to the num-
ber of all subset-class instances of cardinality 2 or larger in Y. The TMEMB(X,Y)
value is divided by the sum of these subset-class instances.

EQUATION:

TMEMB(X, Y)
X 2¥ (4 x+#Y + 2)

ATMEMB(XY) =

EXAMPLE 3.42: ATMEMB(5-7,5-15). The TMEMB value of these SCs, 46, was found out in Ex. 3.40
above. The example also gave the prime forms and the vector pairs. The value of the divisor term in

the ATMEMB equation is (25 + 25 - (5 + 5 +2)) = (32 + 32 - 12) = 52. The ATMEMB value is 46/52 =
0.88. It is an instance of the highest value in the ATMEMB value group #5/#5.

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C34,C4, C5.

THE ATMEMB VALUE GROUP #2-#12/#2-#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 1. Value indicating highest degree of dissimilarity: 0. Average:
0.45. Number of distinct values: 101. ATMEMB(X,Y) may or may not be
ATMEMB(XC,YC)-




Evaluating Similarity Relations 85

TABLE 3.14: ATMEMB value groups #n/#m, 3 < n,m < 9. Higher values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
0.0 0.62
#31p.29 5 #4
0.0 0.93|0.14 0.86
#4419 35 13 [0.47 17 #5
4s|0.1_ 0.67]0.11 0.89]0.19 0.88
0.28 15 |0.49 29 |0.61 33 #6
4c|0-07 0.51[0.07 0.76[0.16 0.55[0.14 0.9
0.19 15 |0.38 40 [0.59 58 |0.66 59 #7
47|0-05 0.25(0.12 0.45[0.22 0.7 [0.25 0.53[0.47 0.95
0.13 18 |0.28 32 |0.48 45 Jo0.64 61 |0.74 39 48
4g|0-03 0.13]0.07 0.31[0.14 0.56[0.17 0.84]0.47 1.0 [0.54 0,95
0.0811 [0.1923 |0.36 35 [0.5354 |0.72 48 [0.79 38 #9
4o|0-02 0.07[0.04 0.19]0.12 0.340.17 0.55[0.41 0.82]0.43 0.99[0.74 0.98
0.056 |0.1316 |0.26 21 |o0.41 33 [0.63 32 |0.79 38 |0.89 18

3.72.1 Analysis

A SC of cardinality n contains 21" subset-class instances. Out of these, the n instances
of the monadic class 1-1, as well as the single instance of the null set-class 0-1, are of
no interest from the point of view of subset-class contents. In the divisor of the
ATMEMB equation, the sum (#X + #Y + 2) equals the number of these instances. It is

subtracted from the sum 2#X + 2#Y the difference giving the number of subset-class

instances of cardinality 2 and larger. Thus, ATMEMB returns the ratio between the
number of instances belonging to mutually embedded subset-classes of cardinality 2
or larger and the number of all subset-class instances of cardinality 2 or larger.

ATMEMB is related to TMEMB in the same way as ASIM is related to SIM
and ak to k. All unadjusted values are scaled between 0 and 1. The advantage
ATMEMB has over TMEMB is obvious. Since the scale of values is now uniform for
all cases, comparisons can be made without difficulty. Table 3.14 shows, for exam-
ple, that value group #n/#n averages grow rather rapidly as n grows. The highest
value in #3/#3, 0.62, is lower than the lowest value, 0.74, in #9 /#9.

The value of the divisor term in the ATMEMB equation is the same for all SC
pairs in a single comparison group. Consequently, given SC pairs {X,Y} and {Z,W} of
the same comparison group, if TMEMB(X,Y) = TMEMB(Z,W), also ATMEMB(X,Y) =
ATMEMB(Z,W). This seems to imply that TMEMB and ATMEMB value groups
produced by a given comparison group always contain the same number of distinct
values. This is not true in all cases, however. Rounding the ATMEMB values to two
decimal places may lead to the result that several TMEMB values correspond to only
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one ATMEMB value. Because of this, some distinct value entries in the ATMEMB
Table 3.14 are lower than their counterparts in the TMEMB Table 3.13.

The divisor in the ATMEMB equation creates an interesting dilemma. Rahn
states that the divisor gives "the total number of possible subsets of size greater than
one that are mutually embeddable in sets A and B." (1979-80:493). This, however, is
true only if #A = #B. Let X be a triad class and Y a nonad class. During TMEMB cal -
culation we would compare 2CV(X) to 2CV(Y) and 3CV(X) to 3CV(Y). No other n-
class vectors would participate as the limit is the lesser of #X and #Y (Ibid., 493).
When determining the divisor to obtain the ATMEMB(X,Y) value, however, all sub-
set-class instances of cardinality 2 or larger would be counted. For X, the number of
the instances is (23 - 3 - 1) = 4. For Y, the corresponding figure is (29-9-1)=502.Y's
4-pc and larger subset-classes are not "mutually embeddable" as they are of larger
cardinalities than X. Out of the 502 subset-class instances in Y, only 120 dyad class
and triad class instances fulfil the condition. The remaining 382 instances increase
the size of the divisor considerably, and, consequently, considerably decrease the
degree of similarity between X and Y.

It would seem natural to assume that if #Y > #X, only those subset-class in -
stances in Y whose cardinality is up to #X could contribute to the divisor. This
would create a natural balance between the number of instances belonging to mutu-
ally embedded subset-classes (the TMEMB value), and the number of instances be-
longing to subset-classes that in principle could be mutually embedded (constituting
the divisor).46 One can only guess whether the participation of the mutually non-
embeddable subset-class instances in the larger SC is a mistake or an intentionally
adopted feature. Rahn may have come to the conclusion that taking all instances
into account correlates better with the intuitive sense of similarity he experiences. In
this case, the statement about the mutually embeddable instances is incorrect. No
examples are provided in Rahn (1979-80). Nor is this detail clarified or any examples
provided in Rahn (1989), another source where ATMEMB is discussed at length.

The status of different subset-class cardinalities in ATMEMB will not be ex-
amined separately. This topic was being investigated already in connection with
TMEMB. The observations provided in section 3.7.1.2 are relevant also with
ATMEMB.

46 In order to examine this modification, some comparisons groups were first compared with
ATMEMB, then with a measure otherwise identical to it, but with the "reduced"” divisor. Comparison
groups #n/#n produced identical value groups. Value groups #n/#m with large differences between
n and m, in contrast, were radically different. For example, the average of the ATMEMB value group
#3/#9 was more than four times smaller than the corresponding figure for the reduced-divisor ver -
sion.
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3.7.2.2 ATMEMB Values of Z-related and Inversionally Related Pairs

As a total measure ATMEMB can discriminate between Z-related classes and, under
Tn-classification, also between inversionally related classes. This gives rise to a
number of interesting questions: Do all Z-pairs in a single comparison group share a
uniform ATMEMB value?; Are there cases where a Z-related SC is more similar to
some other class than to its Z-counterpart?; Under Tn-classification, are there cases
where an inversionally non-symmetric SC is more similar to some other class than to
its inversional counterpart?; etc.

Under Tn, /I-classification, the highest ATMEMB value to be found among Z-
related pairs, 0.91, belongs to the pair {8-Z15,8-Z29}. The lowest value, 0.65, belongs
to two hexad class pairs, {6-Z4,6-Z37} and {6-226,6-Z48}. The average is 0.74. The Z-
related hexad class pair with the highest value, 0.79, is {6-Z11,6-Z40}. Among the
three Z-related pentad class pairs the values vary from 0.73 to 0.71, and among their
7-pc complement classes from 0.83 to 0.82. The sole tetrad class pair {4-Z15,4-729}
gets the value 0.73. Comparing these values to those in the ATMEMB value group
information table 3.14 reveals that they are usually above averages, but not on par
with the highest values.

Every Z-related class produces its highest ATMEMB value with a class other
than its Z-counterpart. This is extremely interesting, of course, as it suggests that
identical dyad class contents do not in any way guarantee out of the ordinary simi-
larity between subset-class contents of larger cardinalities. For example, the
ATMEMB value between the Z-related pair {6-Z10,6-Z39} is 0.71. The individual
ATMEMB value group 6-Z10/#2-#12 contains no less than 51 values exceeding
0.71. Among these: ATMEMB(6-Z10,7-Z37) = 0.86; ATMEMB(6-210,6-Z11) = 0.84;
ATMEMB(6-Z210,5-Z218) = 0.77; etc. It is also noteworthy that numbers of values
exceeding the Z-value may be different for the two counterparts. Let the other class
in the pair {6-Z10,6-Z39} be our example. The individual ATMEMB value group
6-Z39/#2-#12 contains not 51, but only 36 values exceeding the Z-value 0.71.
Moreover, the SCs producing high values with 6-Z10 may be considerably more
distant from 6-Z39. For example, ATMEMB(6-239,7-Z237) = 0.65 (with 6-Z10 the
7-237 value was 0.86). ATMEMB(6-239,5-Z18) = 0.59 (with 6-Z10 0.77). Etc.

Generally, given in turn each Z-related SC pair {Z1,Z2} with the two individ-
ual ATMEMB value groups Z1/#2-#12 and Z 2/#2-#12, the average number of val -
ues exceeding the ATMEMB(Z1,Z2) value in each of the two value groups is 20. The
smallest individual number of values above the Z-value is only two, belonging to
classes in the pair {8-Z15,8-Z29}. According to ATMEMB - and, as we will see, also
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according to the other total measures - the Z-related classes turn out to be quite
something else than the Siamese twins their dyad class contents deem them.

Under Tn-classification, pairs of inversionally related classes belonging to a
single comparison group do not produce a uniform ATMEMB value. The only ex-
ception is the group #3/#3. (Table 3.15). All other total measures produce results re -
peating this extremely important observation.

The average ATMEMB value of all I-pairs is 0.76. Out of these 128 pairs, only
29 contain classes which are each other's closest ATMEMB counterparts. The pair
{6-30A,6-30B}, for example, has the ATMEMB value 0.53. The individual ATMEMB
value group 6-30A/#2-#12 contains an astounding 112 values exceeding 0.53. For
6-30B the corresponding number is the same.

Generally, given in turn each inversionally non-symmetric SC X, its inver-
sionally related class I(X) and its individual ATMEMB value group X/#2-#12, the
average number of values exceeding the ATMEMB(X,I(X)) value is 11.

TABLE 3.15: ATMEMB values indicating the highest, lowest and average degrees of similarity among
pairs of inversionally related SCs. The six columns list (1) the comparison groups #n/#n, (2) the most
similar I-pairs in the comparison groups, (3) the values belonging to the pairs in column 2, (4) the
most dissimilar I-pairs in the comparison groups, (5) the values belonging to the pairs in column 4,
(6) the average values of all I-pairs in the comparison groups. 47

c.group most simil. wvalue most dissimil., wvalue average

#9/#9: {9-4A,9-4B} 0.95 {9-5A,9-5B} 0.93 0.94
#8/#8: {8-19A,8-19B} 0.91 {8-215A,8-215B} 0.79 0.85
#7/#7: (7-31a,7-31B} 0.94 {7-21A,7-21B} 0.77 0.81
#6/#6: {6-14A,6-14B} 0.86 {6-30A,6-30B} 0.53 0.72
#5/#5: {5-21A,5-21B} 0.88 {5-31A,5-31B} 0.58 0.71
#4/#4: {4-22A,4-22B} 0.73 {4-Z215A,4-715B} 0.55 0.64

#3/#3: All inversionally related 3-pc classes share the value 0.75
Given an inversionally symmetric SC S and inversionally non-symmetric SCs X and
Y, it is always so that ATMEMB(S,X) = ATMEMB(S,I(X)) and that ATMEMB(X,Y) =
ATMEMB(I(X),I(Y)). ATMEMB(X,Y) may or may not be ATMEMB(X,I(Y)).48

3.7.2.3 ATMEMB: Conclusions

ATMEMB fulfils many important evaluation criteria and is based on a principle that

47 1f there are several I-pairs sharing a minimum or maximum value, only one pair is given as a rep-
resentative of the pairs. This remark is valid also for tables 3.17 and 3.19 below.

48 We do not have proofs for these formalisations. They, and the ones like them in connection with
the other measures fulfilling C5, were obtained through exhaustive computer searches.
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in certain types of case seems to produce more satisfactory results than measures
based on one-to-one correspondence. (Section 3.6.10.2). In other types of case, how-
ever, the results it produces seem to be counterintuitive. In our opinion, the divisor
term in the ATMEMB equation is flawed, resulting in values suggesting suspi-
ciously high degrees of dissimilarity for SCs of clearly different cardinalities. The
general reliability and usefulness of the measure is difficult to determine.

3.7.3 Lewin: REL

Presented in Lewin (1979-80b). A total measure pairing subset-class instances by
one-to-many correspondence.

COMPARISON PROCEDURE:

To calculate REL(X,Y), the n-class vectors of X and Y, n ranging from 2 to the lesser
of #X, #Y, are first obtained. 4% Two intermediate values are then calculated to reach
the final value. (1) In each pair of corresponding vectors, corresponding components
are multiplied. The square root is taken of each product. All square roots from all
vector pair comparisons are added togeher. (2) All components in the vectors of X
are added together and multiplied by the sum of all components in the vectors of Y.
The square root of the product is taken. Finally, the intermediate value (1) is divided
by the intermediate value (2).

EQUATION: %0
Given SCs X and Y, the family TEST of all SCs of cardinalities 2 to the lesser of
#X #Y, the value of the function EMB(A,X), being the number of instances of SC A in
X, and the value of the function TOTAL(X), being the number of all TEST class in-
stances in X,

REL(X,Y) = <
W

where

Vv = Y JEMB(A,X)*EMB(A,Y) and W = /TOTAL(X)* TOTAL(Y)
2 eTEST

49 Lewin discusses REL at a very general level. The use of n-class vectors, for example, is not specifi-
cally required. This formulation, then, is our own.

50 After Lewin (1979-80b:500) and Morris (1987:107). Morris's equation is incorrect as it suggests that
EMB(A,X) and EMB(A,Y) in V are to be added together.
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EXAMPLE 3.43: REL(5-7,5-15).°1 The prime forms are {0,1,2,6,7} and {0,1,2,6,8}, respectively. As the
upper limit for TEST is 5, the nCVs to be compared are 2CVs, 3CVs, 4CVs and 5Cvs. TOTAL(5-7) is
the sum of all components in 2CV(5-7), 3CV(5-7), 4CV(5-7) and 5CV(5-7). This sum, 26, is the same for
5-15. The value of the divisor W is ¥(26*26) = 26. To solve the value of the term V, we multiply the
corresponding components, take the square root of each product and add all square roots together.

2Cv(5-7) =[ 3 1 0 1 3 2]
2Cv(5-15)=[ 2 2 0 2 2 2]
SVxivi = V6+V2 + V2+V6+V4

= 2.4+ 1.4 +1.4.+ 2.4+ 2 =9.73.

3cv(5-7) =[1 0 0 2 5 0 0 1 1 O 0]

3cv(5-15)=[1_ 0 0 2 2 0 0 4 1 0 0]

SVxivi =V1 + Vaw10 + Va1

=1+ 2+ 3.2+ 2+ 1=29.16
A4CV(5-7) =[000011011000000100000000000 0 0]
A4CV(5-15)=[0 0002 00000000002 000000001000 Q]
SVxivi = 2 + 2 ~2.83
5CV(5-7) =[0 0 00001000000000000000000000000000000 0]
5CV(5-15)=[0 0 0 0 0 000000000100 000000000000000000Q0O0 0]
SVxiyi = 0

V/W=(9.73+9.16 + 2.83 + 0)/26 = 21.72 /26 = 0.84.

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C34,C4, C5.

THE REL VALUE GROUP #2-#12 /#2-#12:

Non-integer values rounded to two decimal places. Value indicating highest degree
of similarity: 1. Value indicating highest degree of dissimilarity: 0. Average: 0.57.
Number of distinct values: 91. REL(X,Y) may or may not be REL(XC,YC).

51 Same SCs were compared with TMEMB in Ex. 3.40 and ATMEMB in Ex. 3.42.
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TABLE 3.16: The REL value groups #n/#m, 3 < nm < 9. Higher values indicate higher degrees of
similarity. Each table cell contains, clockwise from the top left: the lowest and highest values, the
number of distinct values, the average.

#3
0.0 06
#3190 28 ¢ #4
0.0 095]0.13 0.85
#4190 4 18 |0.45 38 #5
45/0.16 0.88[0.12 0.92]0.19 0.86
0.45 29 |0.52 67 |0.58 54 #6
4|0-15 0.85(0.1 0.88(0.17 0.580.14 0.88
0.45 42 [0.51 61 {0.6 70 |0.63 61 #7
47[0-2 0.67[0.23 0.7 [0.25 0.8 [0.25 0.93(0.45 0.1
04532 |05 42 |0.59 48 |0.65 64 [0.71 41 48
4g|0-19 0.57[0.23 0.66[0.26 0.74[0.22 0.88[0.45 0.58]0.5 0.91
0.43 25 |0.4737 056 41 [0.6354 [0.72 49 |0.76 38 #9
4o|0-24 0.52[0.21 0.58[0.31 0.62[0.27 0.73(0.49 0.86[0.45 0.57(0.7 0.54
0.42 18 |0.45 30 |0.52 26 [0.59 36 [0.71 35 [0.79 39 |o.86 17

3.7.3.1 Analysis

In (1977) and (1979-80b) Lewin suggests a probabilistic approach to various aspects
of pcset theory. REL is a part of this discussion, being given as an alternative
for Rahn's ATMEMB. For each member A of TEST, we define pX(A) =
EMB(A,X)/TOTAL(X). Then pX is a probability function on TEST. pX(A) is our ex-
pectation that, if a subset-class of X belonging to TEST is extracted, it will be specifi-
cally A. Given another SC Y, we can construct the analogous probability function pY
on TEST. By correlating the individual results we can then evaluate the "relatedness"
of X and Y with respect to the TEST family (after Lewin 1979-80b:499-501).

Lewin outlines three versions of REL. The one described above, being our
norm, is the most extensive version comparing entire subset-class contents. Another
version resembles MEMB, in that it compares only one subset-class cardinality at a
time, but allows the cardinality to be selected freely. In the most limited version only
2CVs are compared. We will use this version, to be called REL) after Isaacson
(1992:59), during comparisons with the measures based on one-to-one correspon-
dence. (Section 3.7.3.4).

REL value 0, indicating maximal dissimilarity, can take place only if X and Y
do not share any subset-classes. Value 1, indicating maximal similarity, is produced
only if X = Y. REL resembles MEMBp, and its derivatives in the respect that corre-
sponding components can contribute to similarity only if both are nonzero. In mul-
tiplying the components the former has an advantage over the latter, however.
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MEMBn needs a separate condition deeming component sum (xj+y;) valid only if xj
> 0 and yj > 0. Lewin calls this condition "an arithmetic awkwardness." (1979-
80b:501). He also notes that multiplying and taking the square root of the product
produces the geometric mean of the components. Given components xj and yi, xi is to
the mean V(xjyj) as the mean is to yj (Ibid., 500).

Comparing the REL Table 3.16 to the ATMEMB Table 3.14, we see that the
two one-to-many correspondence measures with normalised values produce rather
similar results for comparison groups #n/#m where n = m or where the difference
between n and m is small. For example, the lowest, highest and average values in
the REL value group #3/#3 are 0, 0.6, and 0.28, respectively. The corresponding fig -
ures in the ATMEMB value group #3/#3 are 0, 0.62 and 0.29. Comparison groups
#n/#m with large differences between n and m, in contrast, produce highly differ -
ent REL and ATMEMB value groups. This is due to the peculiar feature in the divi-
sor of the ATMEMB formula. (Section 3.7.2.1).

In section 3.7.1.2 above we examined the status of the different subset-class
cardinalities in TMEMB by comparing the TMEMB and MEMBS§ value groups of the
comparison group #9/#9. The MEMBSg values, being incorporated in their TMEMB
counterparts, were seen to contribute very little to the latter values. Since REL also
processes all subset-classes as one entity, the TEST family of SCs, it shares the prop-
erty of giving a very small representation for some subset-class cardinalities. (See
related discussion in section 2.5).

3.7.3.2 REL Values of Z-related and Inversionally Related Pairs

Like TMEMB and ATMEMB, REL too can discriminate between Z-related classes
and, under Tn-classification, between inversionally related classes. Under Tn /I-clas-
sification the Z-related pairs with the highest and lowest values are the same as they
were with ATMEMB: REL(8-215,8-ZZ9)'= 0.9, REL(6-Z4,6-Z37) = REL(6-Z26,6-ZA8) =
0.64. The average is 0.73. Out of the Z-related hexad class pairs, REL too deems the
pair {6-Z11,6-Z40} most similar. The value is 0.78. The Z-related septad classes
get values between 0.83 and 0.81, their 5-pc complements between 0.73 and 0.7.
REL(4-Z215,4-Z29) = 0.73.

Given in turn each Z-related SC pair {Z1,Z2} with the two individual REL
value groups Z1/#2-#12 and Z2/#2-#12, the average number of values exceeding
the REL(Z1,Z2) value in each of the two value groups is 30. The highest individual
number of values above the Z-value belongs to 6-Z10. The REL value group
6-Z10/#2-#12 contains 66 values exceeding the REL(6-Z10,6-Z39) value. As with
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ATMEMB, the numbers are not necessarily identical for the Z-counterparts. In the
individual REL value group 6-Z39/#2-#12, 54 values exceed the REL(6-239,6-210)
value. The SCs with the lowest number of values above the Z-value are again 8-Z15
and 8-Z29. They are the fourth closest classes with respect to one another. The re-
sults correspond quite closely with those produced by ATMEMB.

Under Tn-classification, pairs of inversionally related classes in a single com-
parison group produce varying REL values. Again, the group #3/#3 is an exception.
Table 3.17.

TABLE 3.17: REL values indicating the highest, lowest and average degrees of similarity among pairs
of inversionally related SCs. The six columns list (1) the comparison groups #n/#n, (2) the most simi -
lar I-pairs in the comparison groups, (3) the values belonging to the pairs in column 2, (4) the most
dissimilar I-pairs in the comparison groups, (5) the values belonging to the pairs in column 4, (6) the
average values of all I-pairs in the comparison groups.

c.group most simil. value most dissimil. wvalue average
#9/#9: {9-44,9-4B} 0.94 {9-8A,9-8B} 0.92 0.93
#8/#8: {8-19A,8-19B} 0.90 {8-715A,8-Zz15B} 0.79 0.84
#7/#7: {7-31A,7-31B} 0.91 {7-21A,7-21B} 0.76 0.81
#6/#6: {6-14A,6-14B} 0.86 {6-30A,6-30B} 0.53 0.71
#5/#5: {5-21A,5-21B} 0.86 {5-31A,5-31B} 0.58 0.70
#4/#4: {4-22A,4-22B} 0.73 {4-715A,4-7Z15B} 0.55 0.64
#3/#3: All inversionally related 3-pc classes share the value 0.75.

The pairs in Table 3.17 are often the same as the corresponding ones in Table 3.15.
Also the values correspond closely. The average I-pair value is 0.75. Out of these 128
pairs, only 11 are such that the classes are each other's closest REL counterparts.
Among these are {6-14A,6-14B} and six 9-pc pairs. Generally, given in turn each in-
versionally non-symmetric SC X, its inversionally related class I(X) and its individ-
ual REL value group X/#2-#12, the average number of values exceeding the
REL(X,I(X)) value is 18. The SCs with the highest number of values above the I-value
form the pairs {4-Z15A 4-Z15B} and {4-Z29A,4-Z29B}. For each of these four SCs
there are 131 classes closer than the I-counterpart. This figure is well over a third of
all 352 transpositional SCs.

Given an inversionally symmetric SC S and inversionally non-symmetric SCs
X and Y, it is always so that REL(5,X) = REL(S,I(X)) and that REL(X,Y) =
REL(I(X),I(Y)). REL(X,Y) may or may not be REL(X,I(Y)).

3.7.3.3 REL and MEMBp, as One-To-Many Correspondence Measures

As noted in section 3.6.10.2, multiplying corresponding vector components corre-
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sponds to determining the total number of (one-to-many) instance pairings between
two SCs. The next step in REL, i.e., taking the square roots of the products to obtain
the geometric means of the components, is necessary in order to keep peaked distri-
butions from being rewarded.>? Dividing the sum of the means, in turn, scales the
values to make them lie between 0 and 1.

Let us examine which one of the two measures based on one-to-many corre-
spondence, REL or MEMBy, seems to produce more satisfying results. In Diagram
3.2, each circle represents a SC, the dots instances of some subset-class S. SC pair (a)
is the same as pair (d), pair (b) same as pair (e), etc.

DIAGRAM 3.2:
(a) (b) (c)
(d) (e) (£)

MEMBp, would produce a uniform degree of similarity for pairs (a)-(c). In each case,
the sum of instances is six. REL, in turn, would suggest increasing similarity. The
number of pairings, depicted as lines between the dots in pairs (d)-(e), increases
from five to eight and then to nine. The corresponding geometric means are V5 =
2.24,V8~2.83 and V9 = 3.

Of the two alternatives, i.e., MEMBp, recording how many instances partici-
pate in the pairings and REL how many pairings there are, we prefer the latter. The
pairings, we believe, are the true indicators of similarity. In MEMBnp,, constant num-
bers of instances may create varying numbers of pairings, suggesting a concealed
gradation of similarity.53 In (c), six instances produce nine pairings. In (b), eight, and
in (a), five.

52 Suppose we compare 2CV(3-3) = [1 01 1 0 0] to itself only by multiplying corresponding compo-
nents. We get (1*1) + (1*1) + (1*1) = 3. Comparing 2CV(3-12) = [0 0 0 3 0 0] to itself would produce
(3*3)=9, suggesting that 3-12 is considerably more similar to itself than 3-3 is to itself. Taking the ge-
ometric means equalizes the results, V1+Y1+V1=3 and V9=3.

53 See a related observation concerning Forte's R1 and R relations in section 3.5.2.1.
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3.7.34 REL and the One-To-One Correspondence Measures

Above examples 3.20 and 3.37 gave four SC pairs, each involving the triad class 3-5
and one of the tetrad classes 4-9, 4-6, 4-5 and 4-Z15. We suggested that this tetrad
class order means increasing dissimilarity for the pairs. We criticized SIM, k, ASIM
and ak for being unable to identify the gradation. %REL2 and MEMBr, by contrast,
produced values suggesting decreasing similarity. REL belongs to the latter cate-
gory. REL(3-5,4-9) = 0.99; REL(3-5,4-6) = 0.83; REL(3-5,4-5) = 0.7; REL(3-5,4-Z15) =
0.63.

For further comparisons between REL and MEMBy, as well as between REL
and the one-to-one correspondence measures, let us return to the set-class pairs we
already compared with MEMB2, SIM and %REL? in section 3.6.10.2. They are
{3-3,3-8}, {3-3,3-12}, {4-1,4-28} and {4-3,4-9}. The prime forms, 2CVs and 2C%Vs are
given in the examples 3.44 and 3.45. Instead of the total version of REL, we will use
the smaller one, REL?2. Each measure, then, compares only 2CVs.

EXAMPLE 3.44: Prime forms 2CVs, and 2C%Vs of three SCs

3: [1 01100] {33033 330 0]

8: {0,2,6} [010101} {033 0 33 0 33]

1 [0OO03 001 [0 O 0100 0 0}

SIM and %REL? suggested a uniform degree of similarity to the triad class pairs,
whereas MEMB? deemed the pair {3-3,3-12} closer. We agreed with the latter result.
Also REL? produces values indicating varying degrees of similarity. REL2(3-3,3-8) =
0.33, REL2(3-3,3-12) = 0.58. The former pair produces only one pairing between cor-
responding dyad class instances, the latter three.

EXAMPLE 3.45: Prime forms, 2CVs and 2C%Vs of four SCs

4-1: {0,1,2,3}, [3 2100 01, [50 33 1700 0]
4-28: {0,3,6,9}, [0 0 4002}, [ O 06700 33]
4-3: {0,1,3,4}, [2 12 1 0 0], [33 17 33 17 0 0]
4-9: {0,1,6,7}, [2 0002 2], [33 0 0 0 33 33]

According to SIM and %REL2, the pair {4-1,4-28} was more dissimilar than the pair
{4-3,4-9}. MEMB? deemed the first pair closer than the second. This time we agreed
with the former result. REL? offers a compromise: REL2(4-1,4-28) = REL2(4-3,4-9) =

0.33. In both cases the number of pairings between corresponding dyad class in-
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stances is four, 1*4 in the former case and 2*2 in the latter. Here, in our opinion, the
one-to-one correspondence measures reflect intuitive similarity better than is done
by REL2. The equal representation of 2-1 in both classes is the very aspect producing
the sense of closer similarity to the pair {4-3,4-9}.

We repeat that both measure categories seem to have their advantages and
disadvantages. In some cases one of the approaches seems to have the upper hand,
only to lose it in others. The analysis in section 3.6.10.2 and here suggests that when
compared to the one-to-many approach, one-to-one correspondence offers a sort of
middle course. It may leave some aspects unnoticed in some cases, but does not
produce clearly counterintuitive results, either. This might result in higher overall
reliability.

3.7.3.5 REL: Conclusions

On the basis of the analysis above, and also on the basis of the many important crite-
ria it fulfils, we conclude that REL is a well-conceived and good measure of SC simi-
larity. In our opinion the values it produces correlate well with intuitive sense of
similarity: small-cardinality comparison groups produce wide ranges of values with
averages suggesting high degree of dissimilarity; large-cardinality comparison
groups produce relatively narrow ranges of values with averages suggesting high
degree of similarity (Table 3.16); pairs with exceptional intuitive closeness get ex-
tremely high values: REL(6-35,5-33) = 0.98; etc. REL shares the advantages of
ATMEMB, partially avoiding some of its disadvantages, while avoiding others com-
pletely.

3.74 Castrén: T%REL

Total Percentage Relation. An expanded version of the %RELp measure. Presented in
an unpublished manuscript. A total measure comparing proportionate subset-class
contents. A one-to-one correspondence measure.

COMPARISON PROCEDURE:
Given SCs X and Y, the classes are compared with %REL?2, %REL3,... %RELm. When

X and Y are of different cardinalities, m is the lesser of #X, #Y. Otherwise, m is #X-1.
The final result is the average of the %RELp, values, rounded to the nearest integer.
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EQUATION:
Given SCs X and Y and the variable m = MIN#X#Y), if #X = #Y, otherwise m =

#X-1,

m
Y %REL, (X, Y)

T%REL(X,Y) = 2=2
X,Y) D)

EXAMPLE 3.46: T%REL(5-2,5-3). The prime forms are {0,1,2,3,5} and {0,1,2,4,5}, respectively.
T%REL(5-2,5-3) = (%REL2(5-2,5-3) + %REL3(5-2,5-3) + %REL4(5-2,5-3))/3.

2C%V(5-2) = [30 30 20 10 10 0]
2C%V(5-3) = [30 20 20 20 10 0]
$RELp (5-2,5-3) = |30-30|+[30-20[+{20-20]|+[10-20|+[10-10]+[0-0]
2
= 0+410+0+10+0+0 = 10
2
3C%V(5-2) = [20 30 10 10 0 10 20 0 0 0 0 0]
3C%V(5-3) = [10 20 30 20 0 10 10 0 0 0 0 0]
%REI(3(5—2,!5—3) = |20-10|+]30-20]+[10-30[+]|10-20[+|0-0]+]10-10]+]|20-10]

2
= 10+10+20+10+0+0+10 = 30

2
4csv(5-2)=[20 20 02000 000202000000000000CO0O0COO0COO0 O]
4c%v(5-3)=[ 0 20 20 20 0 02000 02000000000000O0CO0CO0OO0O0O0O0]
$REL4 (5-2,5-3) = |20-0[+]|20-20|+]0-20]+|20-20]+{0-20|+[20-0]+{20-20]
2

= 20+20+20+20 = 40
2

T%REL(5-2,5-3) = (10+30+40)/3 = 27.

EVALUATION CRITERIA FULFILLED:
C1,C2,C3.1,C3.2,C3.3,C3.4,C4,Cb.

THE T%REL VALUE GROUP #2-#12/#2-#12:

All values are integers. Value indicating highest degree of similarity: 0. Value indi-
cating highest degree of dissimilarity: 100. Average: 63. Number of distinct values:
79. T%REL(X,Y) may or may not be T%REL(XC,YC)-
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TABLE 3.18: T%REL value groups #n/#m, 3 <n,m < 9. Lower values indicate higher degrees of simi -
larity. Each table cell contains, clockwise from the top left: the lowest and highest values, the number
of distinct values, the average. C = 100.

#3
33 ¢
#3|¢g 35 3 #4
0 ¢ |21 92
#4log 97 10 |62.53 12 45
45|27 95 |28 93 |27 83
74.37 19 |69.7 52 [56.28 18 #6
4|27 93 |28 93 0 88 |25 88
74.36 31 |68.66 45 [63.56 54 |54.88 52 #7
4|87 93 [5 o1 [ 85 |26 88 35 70
74 21 30 |67.88 43 [61.97 41 [59.79 53 [48.35 a1 48
4l5° 93 |48 90 |45 85 |26 88 [0 75 |23 68
742 23 |67.48 40 |61.36 35 |58.72 46 [53.41 47 |a4a.87 42 #9
4o64 91 [51 90 [SL 83 [43 87 32 66 [t4 71 |24 o4
74.25 20 |67.07 34 |60.78 28 [58.01 35 [51.69 30 |47.83 39 |36.36 20

3.74.1 Analysis

When the compared SCs X and Y are of the same cardinality m, their m-class %-vec-
tors are not among the compared nC%Vs. The reason is that unless X =Y,
%RELm(X,Y) is automatically 100 and does not meaningfully participate in deter-
mining the degree of similarity. As T%REL(X,Y) is the average of the individual
%RELn(X,Y) values, the m-class value would only serve to increase the final out-
come.

When comparing SCs of large cardinalities with total measures processing all
subset-classes as one entity, the largest subset-class cardinalities were seen to have a
weak impact in the values. (Sections 2.5, 3.7.1.2 and 3.7.3.1). As T%REL compares
each subset-class cardinality separately, the situation is entirely different. Let us
again examine the comparison group #9/#9.

Among the 66 values in the %RELg value group #9/#9, there are 13 instances
of the maximum value 100. The lowest value is 56, the average 83. When the T%REL
value group #9/#9 is obtained, the octad class distributions, suggesting strong dis -
similarity, contribute exactly as much to the final outcome as dyad class, triad class,
and all the other distributions do. As a result, T%REL leads to an observation exactly
contrary to that produced by %REL2. Some values are too high to be intuitively ac-
ceptable. See Table 3.18. For example, the lowest value in the value group #9/#9 is
24, the average ca. 36. This suggests a rather high degree of dissimilarity for nonad
class pairs in general. The pentad classes are deemed still more distant from each
other. The value group #5/#5 minimum is 27 and the average circa 56. The latter en -
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try is twice as high as its counterpart for %REL?. (Table 3.2). It is to be noted, how-
ever, that highly different cardinalities do not produce counterintuitively low val-
ues. The insensitivity to large cardinality differences we observed in %REL?2 is
avoided here.

We believe that processing different subset-class cardinalities separately is a
correct approach. The high values are a result from not taking the non-common sub-
set-class criterion C6 into account. We saw above, for example, that disjoint octad
class contents may bear some, possibly considerable, similarity. (Section 3.7.1.2).
Relation to criterion C6 is exactly the difference between T%REL and RECREL. The
former measures the extent to which the proportioned subset-class contents of two
SCs overlap, and stops there. For the latter, this is merely the starting point. Degrees
of similarity are determined also for the unilaterally embedded subset-classes of
cardinalities 3 and higher. Consequently, RECREL values are lower than their
T%REL counterparts.

3.7.4.2 T%REL Values of Z-related and Inversionally Related Pairs

As a total measure T%REL, like TMEMB, ATMEMB and REL, can discriminate be-
tween Z-related classes and, under Tn-classification, between inversionally related
classes. Under Tp, /I-classification the most similar and most dissimilar Z-related
SCs are the same as with ATMEMB and REL. T%REL(8-Z15,8-7229) = 23.
T%REL(6-Z4,6-Z37) = T%REL(6-726,6-Z48) = 50. The average value is 39. Out of the
Z-related hexad class pairs, the highest degree of similarity belongs to {6-7244,6-Z19},
of value 30. Values of the Z-related septad classes vary between 31 and 36, those of
their 5-pc complements between 30 and 40. T%REL(4-215,4-Z29) = 25.

Given in turn each Z-related SC pair {Z1,Z2} with the two individual T%REL
value groups Z1/#2-#12 and Z 2/#2-#12, the average number of values below the
T%REL(Z1,Z2) value in each of the two value groups is 10. The class with most val-
ues below the Z-value is 6-Z39. The individual T%REL value group 6-Z39/#2-#12
contains 30 values below the T%REL(6-Z239,6-210) value. The value group 6-Z10/#2-
#12, in turn, contains 27 such values. At the other end of the scale there are 14 SCs
for which their very lowest T%REL values are with their Z-counterparts.

Under Tp-classification, T%REL produces results resembling those from the
other total measures. With the exception of group #3/#3, inversionally related SCs
within a single comparison group do not produce uniform values. Table 3.19.

The average I-pair value is 33. Generally, given in turn each inversionally
non-symmetric SC X, its inversionally related class I(X) and its individual T%REL
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value group X/#2-#12, the average number of values below the T%REL(X,I(X))
value is four. This figure is lower than those produced by ATMEMB and REL, being
11 and 18, respectively. Furthermore, almost half of the inversionally related SC
pairs, 62 out of 128, are such that the two I-counterparts are each other's closest
T%REL counterparts. For ATMEMB and REL the corresponding figures were 29 and
11 out of 128, respectively. The SCs with the largest number of values below the I-
counterpart value are 6-Z15A, 6-Z15B, 6-Z31A and 6-Z31B. The number is 35 in each

case.

TABLE 3.19: T%REL values indicating the highest, lowest and average degrees of similarity among
pairs of inversionally related SCs. The six columns list (1) the comparison groups #n/#n, (2) the most
similar I-pairs in the comparison groups, (3) the values belonging to the pairs in column 2, (4) the
most dissimilar I-pairs in the comparison groups, (5) the values belonging to the pairs in column 4,

(6) the average values of all I-pairs in the comparison groups.

c.group most simil. value

most digsimil.

value average

#9/#9:
#8/#8:
#7/4#7:
#6/#6:
#5/#5:
#4/4#4:
#3/#3:

Given an inversionally symmetric SC S and inversionally non-symmetric SCs X and
Y, it is always so that T%REL(S,X) = T%REL(S,I(X)) and that T%REL(X,Y) =
T%REL((X),I(Y)). T%REL(X,Y) may or may not be T%REL(X,I(Y)).

{9-8A,9-8B}
{8-19A,8-19B}
{7-7A,7-1B}
{6-14A,6-14B}
{5-7A,5-7B}
{4-22A,4-22B}

All inversionally related 3-pc classes share the value 0

20
26
23
23
20
25

{9-5A,9-5B}
{8-Z15A, 8-7215B}
{7-238A,7-Z38B}
{6-30A,6-30B}
{5-31A,5-31B}
{4-Z15A,4-Z15B}

21
38
38
55
47
50
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RECREL

4.1 INTRODUCTION

In this chapter we will introduce the RECREL similarity measure, analyse its details
and give some examples of comparisons between pairs of set-classes. Due to the
complexity of the measure, we adopt an approach slightly different from the one we
took with the other similarity measures. This time we will not lay out all its aspects
and details straight away, but will proceed gradually from the general to the par-
ticular. We will go through the comparison procedure three times, each new "round"
building on top of the aspects introduced in the previous one. The terms and con-
cepts are described also in the glossary.

When we introduce the measure initially, in section 4.2, we will use the same
sort of schematic representation as we did in section 2.4.5. Here our sole objective is
to describe RECREL in broad outline and address the following questions: Why is
%RELnp, the internal similarity measure of RECREL, evaluated repeatedly through-
out a single comparison?; What kind of further tasks would seem to arise from a
%RELp, evaluation and how do these lead to still new evaluations?; How do the val-
ues in the tree-shaped net of %RELp comparisons relate to one another?; How are
the individual %RELp values to be processed.to get a final RECREL value?; etc.

In section 4.3, while going through the measure for the second time, we shall
discuss and give names to a number of concepts already identified and used in the
previous section. With the help of the new terminology, we analyse a real RECREL
comparison between two pentad classes, step by step.

In the third and final pass through RECREL, in section 4.4, we will mostly
discuss aspects concerning a proper way to derive a final RECREL value from the
many %RELp values. We will see that, while the comparison in section 4.3 produced

correct results, the characteristics of some other comparisons require additional as-
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pects to be taken into account. After we have identified and described these, the
RECREL similarity measure will have been introduced in its entirety. The section
that follows, 4.5, is devoted to a detailed example, a comparison between a septad
class and a tetrad class.

The nature of section 4.6 is different from those of the sections preceeding it.
We describe the whole comparison mechanism as concisely as possible, first as a
ten-step algorithm and then as a recursive Common Lisp function. In the final sec-
tion, 4.7, we examine the relation between RECREL and the similarity measure cri-
teria given in section 2.3.

42 RECREL IN OUTLINE

Let us recall the schematic example we discussed in connection with criterion C6 in
section 2.4.5, and extend it somewhat in order to see the outline of a RECREL com-
parison.

We have two septad classes, 7-X and 7-Y, and want to measure the degree of
similarity between them. In doing this, our basic tool will be the %RELn similarity
measure. From the indexes of the nonzero components in the 6-class %-vectors of
7-X and 7-Y, we infer that the hexad classes contained in 7-X are 6-A, 6-B and 6-C,
those in 7-Y 6-C, 6-D and 6-E. As the only mutually embedded hexad class is 6-C,
the value for %RELg(7-X,7-Y) would in all probability be high.

We have so far established the extent to which the proportioned hexad class
contents of 7-X and 7-Y consist of similar elements. A notion we know nothing about
as yet, however, is how the non-shared (unilaterally embedded) hexad classes in
7-X, 6-A and 6-B, are related to those in 7-Y, 6-D and 6-E. If we were to deem them
highly similar, the sense of similarity between 7-X and 7-Y would be strengthened. If
they turned out to be highly dissimilar, the high %REL6(7-X,7-Y) value would be
corroborated.

Assessing this degree of similarity requires some effort, as there are four SCs
involved. We have to compare each unilaterally embedded 6-pc class in 7-X to every
corresponding class in 7-Y. The number of pairs to be examined, then, is four:
{6-A,6-D}, {6-A,6-E}, {6-B,6-D} and {6-B,6-E}. For the sake of brevity, let us concen-
trate on only one of them, {6-A,6-D}.

We compare the two hexad classes with %RELS5. The indexes of the nonzero
components in 5C%V(6-A) and 5-C%V(6-D) show that the pentad classes contained
in 6-A are 5-A, 5-B and 5-C, whereas those in 6-D are 5-C, 5-D and 5-E. Only 5-C is
mutually embedded, suggesting a high value for %REL5(6-A,6-D). 5-A and 5-B, the



RECREL 103

unilaterally embedded pentad classes in 6-A, are by definition different classes than
5-D and 5-E, their counterparts in 6-D. If a cross-correlated comparison of these SCs
is made, each pair represents some degree of similarity, which, in turn, can be used
to assess the degree of similarity between 6-A and 6-D more accurately. The four
pairs are {5-A,5-D}, {5-A,5-E}, {5-B,5-D} and {5-B,5-E}.

We examine the first pair only, comparing it with %REL4. Let the 4-pc subset-
classes of 5-A be 4-A, 4-B and 4-C and those of 5-D 4-C, 4-D and 4-E. The only mu-
tually embedded class is 4-C, suggesting a high value for %REL4(5-A,5-D). As the
unilaterally embedded tetrad classes, 4-A and 4-B in 5-A, 4-D and 4-E in 5-D, can
participate in assessing the degree of similarity between 5-A and 5-D, they have to
be paired for further cross-correlated comparisons. The four pairs are {4-A,4-D},
{4-A,4-E}, {4-B,4-D} and {4-B,4-E}.

The ever-expanding tree of comparisons has two more levels to go. As an ex-
ample of the tetrad class pairs we compare 4-A and 4-D with %REL3, observing also
their 3-pc subset-class contents. These are {3-A,3-B,3-C} and {3-C,3-D,3-E}, respec-
tively. We combine the unilaterally embedded triad classes into pairs {3-A,3-D},
{3-A,3-E}, {3-B,3-D} and {3-B,3-E}, and, finally, compare the dyad class contents of
the 5Cs in these pairs with %REL).

Subset-classes of cardinality 2 are the smallest we examine. Consequently,
the four values from %REL2(3-A,3-D), %REL2(3-A,3-E), %REL2(3-B,3-D) and
%REL2(3-B,3-E) are accepted as they are, without further deliberations on possible
similarities between unilaterally embedded dyad classes. Together, these values
determine the degree of similarity between the triad classes embedded unilaterally
in 4-A and 4-D. Next, we want the four values to be processed so that the result is a
single value representing them. For the time being, let us take their average and call
it 2.1 Besides 4, 4-A and 4-D produced another value, the one from %REL3(4-A 4-D).
Let us call this original value o.

We have now to decide what is the mutual relationship of these values. Shall
we, for example, abandon o and determine 4 to be the final value? This is not possi-
ble, because o gives the original extent to which 3C%V(4-A) and 3C%V(4-D) differ,
and a is tied to it. We expressly need o to indicate how large is the "dissimilar share"
whose internal degree of similarity is 4. Quite simply, a percent from a large share is
different from a percent from a small one. The original value can be anything at all,
of course, 5, 50 or 95.

We decide that we update the original value o by taking # percent from it:
(0 * a)/100. In the tree of comparisons, this is the final value for the pair {4-A,4-D}. It

1 Later on, after some new concepts have been introduced, the way to determine a value representing
a set of values will be slightly modified.
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reflects two separate notions: first, how large are the shares that the unilaterally em-
bedded classes have in the entire 3-pc subset-class contents of 4-A and 4-D, and sec-
ond, what is the internal degree of similarity between those two groups of unilater-
ally embedded classes. If both 0 and a were 90, for example, the final value would be
(90 * 90)/100 = 81. The very high degree of dissimilarity between the unilaterally
embedded SCs would change the original value only slightly. If, on the other hand, o
were to be 90 and a 20, the final {4-A 4-D} value would be 18. Here the non-shared 3-
pc subset-classes, being similar to one another, decrease the final degree of similarity
considerably.

In an identical manner, groups of triad class pairs are derived also from each
of the three "sibling" pairs of {4-A,4-D}. They are {4-A 4-E}, {4-B,4-D} and {4-B4-E}.
Each group produces an average value updating its "parent” tetrad class pair value.
The four updated tetrad class values, in turn, together give the degree of similarity
between the unilaterally embedded tetrad class materials of 5-A and 5-D, their own
"parent" pair. We take the average a of these four values and update the
%REL4(5-A,5-D) value o with it. The new value takes into account both the shares of
the unilaterally embedded 4-pc subset-classes in the tetrad class contents of 5-A and
5-D, and the degree of similarity between those two disjoint groups of SCs. Each of
the "sibling" pairs of {5-A,5-D}, i.e., {5-A,5-E}, {5-B,5-D} and {5-B,5-E}, generates its
own tree of %RELp comparisons and from this, in reversed order, a tree of value
updatings where the value of each SC pair is updated with the values of its "off-
spring" pairs. When all four pentad class pairs have received their updated values,
the average 4 of these values updates the original "parent” %REL5(6-A,6-D) value o.
The other hexad class pairs, {6-A,6-E}, {6-B,6-D} and {6-B,6-E}, receive their own up-
dated values from corresponding trees of comparisons and value updatings.
When the average a of the four hexad class pair values updates the original
%RELg(7-X,7-Y) value o, the succession of comparisons and value updatings is
complete.

In the example above, let us assume that each SC in each compared pair con-
tains two unilaterally embedded subset-classes. When paired cross-correlatedly, the
subset-classes of each pair would then produce four new pairs to be compared.
Altogether the number of %RELg evaluations is one, the number of %REL5 evalua-
tions 4, the number of %REL4 evaluations 16, the number of %REL3 evaluations 64
and the number of %REL? evaluations 256. The total number of %RELp, evaluations
in our example, then, would be 341. Obviously, the "REC" in RECREL is for recursive,
reflecting the tendency of the measure to produce many %RELn evaluations from
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one initial evaluation.2

Despite the large number of %RELp, evaluations, the steps taken so far do not
constitute the entire RECREL comparison between 7-X and 7-Y, only the major part
of it. We have not, for example, compared the pentad class contents of the two sep-
tad classes yet, only those of the unilaterally embedded hexad classes. These com-
parisons are entirely separate and may produce altogether different results. In order
to make the RECREL(7-X,7-Y) comparison complete, we have to generate similar
trees of comparisons and value updatings from all mutually embeddable subset-
class cardinalities larger than one. The "top-level" comparisons of these trees, from
which the lower-level evaluations are derived, are %REL5(7-X,7-Y), %REL4(7-X,7-Y),
%REL3(7-X,7-Y) and %REL2(7-X,7-Y). With the exception of the last one, each would
produce further comparisons at a lower level or levels. The final RECREL value is
the average of the individual values.

4.3 TERMINOLOGY AND AN EXAMPLE
4.3.1 Terminology
4.3.1.1 Difference Vectors

The RECREL outline in section 4.2 was slightly simplified in certain respects. For ex-
ample the mutually embedded subset-classes, such as 6-C in both 7-X and 7-Y, were
always excluded from further comparisons. In an actual comparison, however, we
would have had to observe not only whether a given subset-class is mutually em-
bedded, but also how strongly it is represented in the two %-vectors. For example
the component belonging to 6-C in 6C%V(7-X) might have been larger than its coun-
terpart in 6C%V(7-Y). That is, 7-X could have contained a unilaterally embedded
share of 6-C. When the differences between corresponding 6C%V components were
found out during the %RELg(7-X,7-Y) comparison, this excess share of 6-C would
have contributed to dissimilarity in exactly the same manner as the nonzero compo-
nents with zero counterparts, belonging to 6-A and 6-B in 6C%V(7-X) and 6-D and
6-E in 6C%V(7-Y).

Because mutually embedded subset-classes may have different representa-
tions in their respective superset-classes, we have to refine the way with which the
unilaterally embedded subset-class materials are identified for further comparisons.

2 See glossary entries "recursive” and "recursive routine”.
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The proper way resembles a %RELp comparison. Given the n-class %-vectors of SCs
X and Y, we take the differences between pairs of corresponding components
{cx,cY} in both ways, (cX - cY) and (cY - cX). Each non-negative, nonzero difference
(cX - cY) indicates that some subset-class has a larger representation in X than in Y.
The non-negative, nonzero differences (cY - cX) indicate larger representations in Y.
We retain only the non-negative differences, replacing the negative ones with zeros.
The two resulting difference vectors give the unilaterally embedded subset-class
shares in X and Y.3

EXAMPLE 4.1: The 3-class %-vectors of SCs 4-2A and 4-2B (rows 1 and 2 from top, respectively), an
index row and the difference vectors of 4-2A and 4-2B, respectively.

[25 25 0 25 O

25 0 0 0 0 O O O O O]
[25 0 25 0 25 0

25 0 0 0 O O 0 0 0]

[=Na]
oo

1 2 2 3 3 4 4 5 5 6 7 7 8 8 910 11 11 12

25 025 0 0 0 0 O O O O O O O O O O O]
025 025 0 0 0 0 0O O O O O O O O 0 O]

4.3.1.2 Difference Groups

Given the comparison %RELn(X,Y), the difference groups of X and Y consist of the
subset-classes of cardinality n having unilaterally embedded shares in X and Y, re-
spectively. The names of the subset-classes are to be inferred from the indexes of
nonzero components in two difference vectors. In Ex. 4.1, the difference group of
4-2A is {3-2A,3-3A}, that of 4-2B {3-2B,3-3B}. Two difference groups derived from a
single comparison can never contain the same SCs.

4.3.1.3 Cross-Correlation Groups

Given the comparison %RELn(X,Y) within RECREL so that n > 2, each subset-class

in the difference group of X must be compared to every class in that of Y with
%RELn-1. If the two difference groups contain n and m SCs, respectively, the result-

ing cross-correlation group contains (n * m) SC pairs. The cross-correlation group

3 As the negative differences are not saved and as the starting points can be any n-class %-vectors,
our difference vectors are not similar to the Interval-difference Vectors in Isaacson (1990) and (1992).

4 The concept will be slightly expanded later on, as each subset-class in a difference group will be as-
sociated with its weight.
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to be derived from Ex. 4.1 contains the pairs {{3-2A,3-2B},{3-2A,3-3B}, {3-3A,3-2B},
{3-3A,3-3B}}.5

4.3.1.4 Branches

Within the schematically represented RECREL comparison in section 4.2, we
examined an entity consisting of three components: the top-level comparison
%RELg(7-X,7-Y), the tree of comparisons derived from it, and the updatings of the
comparison values. An entity like this will be called a branch. Being an independent
part of a RECREL comparison, a branch is numbered after the n in the top-level
%RELnp. The branch in section 4.2, then, is six, after %RELg(7-X,7-Y). The next
branch is five, containing %REL5(7-X,7-Y), the tree of comparisons derived from it
and the value updatings. Branch four follows, etc., until branch two, consisting of
only the comparison %REL2(7-X,7-Y), has received its value. The final RECREL
value is the average of the branch values.

When two SCs X and Y of cardinality n are compared with RECREL, the
branches are n-1, n-2,..2. Examination of branch n is not meaningful, since
%RELn(X,Y) = 100 for every pair {X,Y} where X # Y. The cross-correlation group de-
rived from %RELn(X,Y) would consist only of the pair {X,Y} itself, meaning that
%RELn-1(X,Y) and the comparisons following it would exactly duplicate the branch
n-1. Pairs of dyad classes are exceptions to this rule. They are compared with
%RELD, since the lowest branch to be calculated, two, is the only one possible for
them.

When SCs X and Y of cardinalities n and m, n < m, are compared with
RECREL, the branches are n, n-1, n-2,..2. Thus, for example, the branches within a
RECREL comparison between a 9-pc SC X and a 4-pc SC Y are four, three and two.
Now, as the value for %REL4(X,Y) is not automatically 100, Y can meaningfully par-

ticipate in the comparison.
4.3.1.5 Levels
Given the branch n, n > 2, within the RECREL comparison between SCs X and Y, we

say that the first comparison %RELn(X,Y) takes place at level n. The %RELp-1 com-

parisons of the pairs in the cross-correlation group derived from X and Y take place

5 Due to the difference group weights to be adopted later on, the cross-correlation group pairs will
also be associated with some additional information.
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in branch n, at level n-1. Accordingly, the group can be identified as a level-n-1
cross-correlation group. The lowest level is two, comprising the %REL2 comparisons

of the pairs in the one, or more, level-two cross-correlation groups.

4.3.2 An Example: RECREL(5-2A,5-2B)

In our first example of a genuine RECREL comparison, the classes to be compared
are 5-2A, {0,1,2,3,5}, and its inversionally related SC 5-2B, {0,2,3,4,5}. The branches
are four, three and two.

EXAMPLE 4.2.1: The 4-class %-vectors of 5-2A (top row) and 5-2B (second row), a row of indexes and
the difference vectors of 5-2A and 5-2B, respectively. %REL4(5-2A,5-2B) = 60.

[2020 0 020 0

0 020 0
[20 0200 02000 0

0 2 0000000000000000000000000O00O0O0 0]
0200200000000000000000000000000°0 0]

1 2234455678910111112121313141415151616171818191920212222232425262727282929

000000
000000

[020 0020

020 000
{00200 02 060

0000000 00000000000000000000
0000000 0020 00000000000000000000
The levels in branch four are four, three and two. The value of the top-level compar-
ison %REL4(5-2A,5-2B) is 60. The two difference groups derived from the difference
vectors in Ex.4.2 are as follows: {4-2A,4-4A,4-11A} for 5-2A, {4-2B,4-4B 4-11B} for
5-2B. The nine-pair level-three cross-correlation group from these is {{4-2A,4-2B},
{4-2A,4-4B}, {4-2A,4-11B}, {4-4A,4-2B}, {4-4A,4-4B}, {4-4A,4-11B}, {4-11A,4-2B},
{4-11A 4-4B}, {4-11A ,4-11B}}. The pairs will be compared with %REL3.

Besides a %REL3 value, each cross-correlation group pair produces two dif-
ference vectors, two difference groups and, as a combination of the latter, a level-
two cross-correlation group. The 3C%Vs and difference vectors of one of these pairs,
{4-2A 4-2B}, is given in Ex. 4.1 above. The corresponding difference groups are given
in section 4.3.1.2 and the resulting cross-correlation group in section 4.3.1.3.

The triad class pairs in the nine level-two cross-correlation groups are com-
pared with %REL2. Once this is completed, we have made 86 %RELp comparisons
at three different levels within branch four. The pairs participating in the compar-
isons, as well as the resulting values, are given as a diagram in Ex. 4.2.2. The one and
only level-four comparison, between the pentad classes, is given first. The level-
three cross-correlation group, containing tetrad class pairs, is given as a column,
each pair being followed by the level-two cross-correlation group derived from it.

The multiple parentheses and the indentation also serve to indicate which list cells
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belong together.6

EXAMPLE 4.2.2: RECREL(5-2A,5-2B), branch four. The 86 %RELy, comparisons at levels four, three
and two.

((5-24,5-2B,60.0)
({(4-22,4-2B,50.0)
((3-2a,3-2B,0.0), (3-2A,3-3B,33.3), (3-3A,3-2B,33.3),(3-34,3-3B,0.0)))
((4-2A4,4-4B,75.0)

((3-2A,3-3B,33.3),(3-2A,3-4B,66.7), (3-2A7,3-7B,33.3),(3-3A4,3-3B,0.0)
(3-3A,3-4B,33.3), (3-3A,3-7B,66.7), (3-6,3-3B,66.7),(3-6,3-4B,66.7)
(3-6,3-7B,66.7)))

((4-2A,4-11B,75.0)

((3-1,3-2B,33.3),(3-1,3-4B,66.7),(3-1,3-7A7,66.7),(3-2A,3-2B,0.0)
(3-2A,3-4B,66.7),(3-2A,3-7A,33.3), (3-3A,3-2B,33.3), (3-34,3-4B,33.3)
(3-3A,3-7A,66.7)))

((4-4A,4-2B,75.0)

((3-3a,3-2B,33.3),(3-3A,3-3B,0.0),(3-3A,3-6,66.7), (3-4A,3-2B,66.7)
(3-4A,3-3B,33.3),(3-4A,3-6,66.7),(3-74,3-2B,33.3), (3-7A,3-3B,66.7)
(3-72,3-6,66.7)))

((4-4A,4-4B,75.0)

((3-3A,3-3B,0.0),(3-3A,3-4B,33.3),(3-3A,3-7B,66.7), (3-4A,3-3B,33.3)
(3-424,3-4B,0.0), (3-4A,3-7B,66.7),(3-7A,3-3B,66.7), (3-7A,3-4B,66.7)
(3-72,3-78B,0.0)))

((4-4A,4-11B,75.0)

((3-1,3-2B,33.3),(3-1,3-4B,66.7),(3-1,3-6,66.7), (3-3A,3-2B,33.3)
(3-3A,3-4B,33.3),(3-3A,3-6 66.7),(3-4A,3-2B,66.7), (3-4A,3-4B,0.0)
(3-42,3-6,66.7)))

((4-11A,4-2B,75.0)

((3-2a,3-1,33.3),(3-2A,3-2B,0.0),(3-2A,3-3B,33.3), (3-4A,3-1,66.7)
(3-4A,3-2B,66.7), (3-4A,3-3B,33.3),(3-7B,3-1,66.7), (3-7B,3-2B,33.3)
(3-7B,3-3B,66.7)))

((4-11a,4-48,75.0)
((3-2a,3-1,33.3),(3-2A,3-3B,33.3),(3-2A,3-4B,66.7),(3-4A,3-1,66.7)
(3-4A,3-3B,33.3), (3-4A,3-4B,0.0),(3-6,3-1,66.7),(3-6,3-3B,66.7)

(3-6,3-4B,66.7}))
((4-11A,4-11B,75.0)

((3-2A,3-2B,0.0), (3-2A,3-4B,66.7), (3-2A,3-7A,33.3),(3-4A,3-2B,66.7)
(3-4A,3-4B,0.0), (3-4A,3-7A,66.7),(3-7B,3-2B,33.3),(3~-7B,3-4B,66.7)
(3-7B,3-7A,0.0})) )

The upper-level values are updated with the lower-level ones. In all other respects
Ex. 4.2.3 contains the same information as 4.2.2, but the SC names are omitted to
make the hierarchy of values more obvious.

6 When %RELp, is repeatedly evaluated within RECREL, values are represented as fractions and pro-
cessed to full accuracy. Only the final RECREL result is rounded. In the examples depicting the com-
parison trees, the values are usually given to the accuracy of one decimal place.
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EXAMPLE 4.2.3: RECREL(5-2A,5-2B), branch four. Values of the 86 %RELy, comparisons at levels
four, three and two.

(60.0
((50.0 ( 0.0, 33.3, 33.3, 0.0, ))
(75.0 (33.3, 66.7, 33.3, 0.0, 33.3, 66.7, 66.7, 66.7, 66.7))
(75.0 (33.3, 66.7, 66.7, 0.0, 66.7, 33.3, 33.3, 33.3, 66.7))
(75.0 (33.3, 0.0, 66.7, 66.7, 33.3, 66.7, 33.3, 66.7, 66.7})
(75.0 ( 0.0, 33.3, 66.7, 33.3, 0.0, 66.7, 66.7, 66.7, 0.0))
(75.0 (33.3, 66.7, 66.7, 33.3, 33.3, 66.7, 66.7, 0.0, 66.7))
(75.0 (33.3, 0.0, 33.3, 66.7, 66.7, 33.3, 66.7, 33.3, 66.7))
(75.0 (33.3, 33.3, 66.7, 66.7, 33.3, 0.0, 66.7, 66.7, 66.7))
(75.0 ( 0.0, 66.7, 33.3, 66.7, 0.0, 66.7, 33.3, 66.7, 0.0))))

The steps applied to update the values are as follows:
(1) Averages are taken from the values in the level-two cross-correlation groups.

EXAMPLE 4.2.4: RECREL(5-2A,5-2B), branch four. Values of comparisons at levels four and three,
with averages values belonging to level-two cross-correlation groups.

(60.0
((50.0 (16.65))
(75.0 (48.15))
(75.0 (44.44))
(75.0 (48.15))
(75.0 (37.04))
(75.0 (48.15))
(75.0 (44.44))
(75.0 (48.15))
(75.0 (37.04))))

(2) Each level-three value is updated with the corresponding level-two average. The
values are multiplied together and divided by 100.

EXAMPLE 4.2.5: RECREL(5-2A,5-2B), branch four. Updating level-three values with corresponding
level-two averages.7

(60.0
({/ (* 50.0 16.65) 100)) = 8.325
(/ (* 75.0 48.15) 100)) = 36.1125
(/ (* 75.0 44.44) 100)) = 33.33
(/ (* 75.0 48.15) 100)) = 36.1125
(/ (* 75.0 37.04) 100)) = 27.78
(/ (* 75.0 48.15) 100)) = 36.1125
(/ (* 75.0 44.44) 100)) = 33.33
(/ (* 75.0 48.15) 100)) = 36.1125
(/ (* 75.0 37.04) 100))) = 27.78

(3) An average is taken from the updated level-three values.

7 Order of functions and arguments as in the Common Lisp programming language.
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EXAMPLE 4.2.6: RECREL(5-2A,5-2B), branch four. The average of the updated level-three values.

(60.0 (/ (+ 8.325 36.1125 33.33 36.1125 27.78 36.1125 33.33 36.1125 27.78) 9))

= (60.0 (30.555))

(4) The final branch-four value, 18.3, is obtained through updating the one and only
level-four value with the level-three average.

EXAMPLE 4.2.7: RECREL(5-2A,5-2B), branch four. The final value.

(/ (* 60.0 30.555) 100) = 18.3

The final branch-four value, 18.3, is considerably below the original top-level com-
parison value, 60. The tetrad class contents of the inversionally related pentad
classes turned out to be more similar than the initial comparison suggested.

Branch three contains two levels, three and two. Value for the top-level com-
parison %REL3(5-2A,5-2B) is 30. The 3C%Vs and difference vectors are given in Ex.

4.2.8.

EXAMPLE 4.2.8: The 3-class %-vectors of 5-2A (top row) and 5-2B (second row), a row of indexes and
the difference vectors of 5-2A and 5-2B, respectively. %REL3(5-2A,5-2B) = 30.

(=]
o
[e=)

[20 20 10 20 0 10 O O ©0 10 10 10
[20 10 20 0 10 010 O ©0 10 10 10

0 0 0]
0 0 0]

o
o
o

1 2 2 3 3 4 4 5 5 6 7 7 8 8 91011 11 12

10 010 010 0 O 0 O O 0 O O O O 0 0 O]
010 010 010 0 0 0O O O O O O O O O 0]

[ O
[0
The difference group of 5-2A contains the SCs {3-2A,3-3A,3-4A}, while that of 5-2B
contains the SCs {3-2B,3-3B,3-4B}. The cross-correlation group, to be compared with
%REL>, is {{3-2A,3-2B}, {3-2A,3-3B}, {3-2A,3-4B}, (3-3A,3-2B}, {3-3A,3-3B},{3-3A,3-4B},
{3-4A,3-2B},{3-4A,3-3B},{3-4A,3-4B}}.

Example 4.2.9 gives the SC pairs and %RELn, values of the ten comparisons in
branch three. The one and only level-three comparison, between the pentad classes,

is at the top. It is followed by the cross-correlation group derived from: it.
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EXAMPLE 4.2.9: RECREL(5-2A,5-2B), branch three. The ten %RELp, comparisons at levels three and
two.

((5-2a,5-2B,30.0)
((3-2a,3-2B, 0.0),(3-2A,3-3B,33.3),(3-2A,3-4B,66.7)
(3-3A,3-2B,33.3), (3-3A,3-3B, 0.0}, (3-3A,3-4B,33.3)
(3-4A,3-2B,66.7), (3-4A,3-3B,33.3), (3-4A,3-4B, 0.0)))

To obtain the final branch-three value, we first calculate the average of the nine
level-two values. It is 29.6. Then, the one and only level-three value, 30, is updated
with the average: (30 * 29.6)/100 = 8.88.

Calculating the value for branch two is easy. The only comparison to be made
is %REL2(5-2A,5-2B). As the two inversionally related SCs have an identical 2C%V,
[30 3020 10 10 0], the %REL) value is 0.

The value of branch four is 18.3, those of branches three and two 8.88 and 0,
respectively. The final value is the average of these three values: RECREL(5-2A,5-2B)
=(18.33 +8.88+0)/3=9.

44 FURTHER DETAILS
441 Weights

So far we have calculated a common value for a cross-correlation group simply by
taking the average of the SC pair values in it. This is natural as long as we process
cross-correlation groups like the one derived from the two difference vectors in Ex.
4.2.1. All difference vector components are the same, 20, suggesting that each subset-
class with a unilaterally embedded share is of equal standing or importance. In fact,
the nonzero components are uniform in all pairs of difference vectors produced dur-
ing the entire RECREL(5-2A,5-2B) comparison. Here, taking an average is an accu-
rate method of reducing several values into one.

We cannot expect to encounter such uniformity in every comparison, how-
ever, and must understand what sort of effects strong variances among difference
vector components can have on cross-correlation group values. Ex. 4.3 gives two 3-
class %-vectors that do not belong to any existing SCs. They were constructed only
to give an extreme example for our discussion. For the sake of convenience, let us
say that the top vector belongs to some hypothetical SC X, the lower one to some SC
Y.
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EXAMPLE 4.3: Two artificial 3C%Vs (rows 1 and 2), an index row and two difference vectors derived
from the 3C%Vs. %REL3 value: 80.

[0 75 O

0 0 0 0 00 0 0O 0 0O O 0 5 020]
{0 0 75 0

0 0 0 20)

o o
o
o
o
o
[=]
;]
[=]
o
[=]
o

1 2 2 3 3 4 4 5 5 6 7 7 8 8 91011 11 12

0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 050 0 0 0 0

5 0 0]
0 0 0]

[075 O

0
[0 0 75 0

(e Nw]

The difference group of X is {3-2A,3-11A}, that of Y {3-2B,3-6}. The cross-correlation
group is {{3-2A,3-2B}, {3-2A,3-6}, {3-11A,3-2B}, {3-11A,3-6}}. The (rounded) %REL2
values of these pairs are 0, 67, 67 and 67, respectively. The average is 50.

In the upper difference vector, a major part of the triad class contents belong
to 3-2A. 3-2B is equally well represented in the lower one. It is evident that the com-
parison %REL2(3-2A,3-2B) will have an exceptional prominence among the compar-
isons, regardless of the actual value it produces. In other words, the degree of simi-
larity between the unilaterally embedded subset-class materials in X and Y is to a
very high extent compatible with the degree of similarity between 3-2A and 3-2B,
whatever that degree is. Likewise, when we compare 3-11A and 3-6, the small com-
ponents indicate that the resulting value, 67, illustrates the degree of similarity exist-
ing within only a fraction of the unilaterally embedded subset-class materials.

Obviously, then, there are two independent aspects to every comparison, the
%RELn value itself and the weight the comparison has among all comparisons in a
cross-correlation group. The latter is to be calculated from the two individual
weights each compared pair has, the individual weights themselves being derived
from difference vector components. Before a component can become the weight of a
subset-class, however, it must be slightly modified.

4472 Scaled Difference Vectors

In Ex. 4.3 the %REL3(X,Y) value 80 indicates (indirectly) that 20% of the propor-
tioned triad class contents of X and Y are the same. These portions are excluded
from further comparisons, leaving the focus solely on the unilaterally embedded
subset-class shares. In spite of this, the mutually embedded shares still have an ef-
fect on the two difference vectors: in both of them, the sum of components is 80. As
the subset-classes having unilaterally embedded shares now constitute a full 100%
of the material we are examining, also their weights must be able to cover 100% of it.
The difference vectors must be scaled so that each component is divided by the sum
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of the components and multiplied by 100. The sum of components in each resulting
scaled difference vector is 100. Ex. 4.4 gives the scaled difference vectors derived from
the difference vectors in Ex. 4.3.

EXAMPLE 4.4: Two scaled difference vectors derived from the difference vectors in Ex. 4.3.

[094 0 O O 0 0 O O O O O O O O O & 0 O]
[0 094 0 0 0 0 0 O 6 0 0 0 0 0 0 0 0 0]
1 2 2 3 3 4 ¢4 5 5 6 7 7 8 8 910 11 11 12

4.4.3 Weights in Difference Groups and Cross-Correlation Groups

From now on, each subset-class in a difference group is to be associated with the
weight its scaled difference vector component indicates. By convention we will give
the weight first, then the SC name. In Ex. 4.3 the difference group of X is {(94,3-2A),
(6,3-11A)} and that of Y {(94,3-2B),(6,3-6)}.

Accordingly, when a cross-correlation group is derived from two difference
groups, each SC pair is to be associated with the weights of the classes. The cross-
correlation group derived from the X- and Y-difference groups above is
{(94,94,3-2A,3-2B), (94,6,3-2A ,3-6), (6,94,3-11A,3-2B), (6,6,3-11A,3-6)}. Each cell gives
the weight of the X-class, the weight of the Y-class, the X-class and the Y-class.

4.4.4 Processing a Cross-Correlation Group

A single value representing an entire cross-correlation group is derived from all
%RELp, values and weights in the group. To do this, two new concepts are needed.
4441 Proportioned Weights

First, a combined weight is determined for each pair from the two class weights.
Given weights w1 and w, the proportioned weight wp = (w1 *w2)/100. It gives the

percentual weight of the SC pair among all pairs in the cross-correlation group. The
sum of proportioned weights in all cross-correlation groups is 100.8

8 Each comparison within a given branch gets its proportioned weight in due course, with the excep-
tion of the very first one. The two top-level SCs do not "inherit" weights from previous comparisons.
In order to make the process of updating the branch values consistent, we determine weights and a
proportioned weight also for the top-level pair. As the pair never shares the top level with any other
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As an example, let us process the cross-correlation group in section 4.4.3 so that a
proportioned weight is calculated from each weight pair. Each element in the modi-
fied cross-correlation group now contains the proportioned weight, the SCs and the
%REL) value of the pair: {(88.4,3-2A,3-2B,0), (5.6,3-2A,3-6,67), (5.6,3-11A,3-2B,67),
(0.4,3-11A,3-6,67)}.

The proportioned weights show, in concrete numbers, how taking an average
from cross-correlation group values can grossly under-represent some comparisons
and over-represent others. In our artificial example, the first pair covers nearly 90%
of the unilaterally embedded subset-class materials, the last one less than 1%.

4442 Weighted Values

Each %RELnp value is related to its corresponding proportioned weight, the result re-
flecting both the degree of similarity between the SCs and the importance of the
comparison within the cross-correlation group.

Given a %RELn value v and a proportioned weight wp, the resulting weighted
value vy = (v * wp)/100. Modified so that each set-class pair is followed by its
weighted value, the cross-correlation group in section 4.4.4.1 above is as follows:
{(3-2A,3-2B,0), (3-2A,3-6,3.75), (3-11A,3-2B,3.75), (3-11A,3-6,0.3)}.

4.44.3 Deriving the Value Representing a Cross-Correlation Group

The value representing an entire cross-correlation group is the sum of all weighted
values in it. This value is the weighted arithmetic mean of the values. In the cross-cor-
relation group of section 4.4.4.2 above, the sum is (0 + 3.75 + 3.75 + 0.3) = 7.8. The
weighted arithmetic mean is substantially lower than the average value 50 which we
calculated for this same cross-correlation group in section 4.4.1.

4.44.4 Updating Weighted Values

The updating process described in sections 4.2 and 4.3.2 is practically identical to the
one we will use with our new and final method for determining a common value for
a cross-correlation group. Predictably, the only difference is that while in the initial

pairs, both SCs get the weight 100. Consequently, the proportioned weight is always 100 as well.



116  Chapter 4

version we calculated the averages of the cross-correlation group values, from now
on we calculate the sums of weighted values.

Given, within some branch, the level-two cross-correlation groups C1, C2,..Cn
and the sums sq, s2,..n of weighted values in them, respectively, each sum sj up-
dates the weighted value vw of the level-three SC pair Pj from which G was de-
rived: (si * vw)/100. The result is interpreted as the new weighted value of Pj. This
SC, in turn, belongs to one of the level-three cross-correlation groups C1, C2,..Cn.
The sums s1, s2, ..sn of (updated) weighted values are taken in each of them. Each
sum sj updates the weighted value of the level-four SC pair from which Cj was de-
rived, etc., until the weighted value of the top-level pair has been updated with the
weighted arithmetic mean of the only cross-correlation group derived from the pair.

Concrete examples of the updating process will be given during the RECREL

comparison below.

45 AN EXAMPLE: RECREL(7-354-22A)

The whole RECREL mechanism has now been introduced and analysed. In the fol-
lowing we will once more go through an entire comparison, describing the different
phases in it in relatively close detail. The classes to be compared are.7-35,
{0,1,3,5,6,8,10}, the "diatonic class," and one of its 4-pc subset-classes, 4-22A, {0,2,4,7}.
As the SCs are of different cardinalities, the highest branch equals the smaller cardi-
nality. The branches are four, three and two.

45.1 Branch Four

Within branch four, the levels are four, three and two. The only level-four compari-
son, %REL4(7-35,4-22A), has the value 91. The value is predictably high, as 4-22A is
itself the only SC with a nonzero component in 4C%V(4-22A). The 4C%Vs, differ-
ence vectors and scaled difference vectors of 7-35 and 4-22A are given in example
4.5.1.

The difference groups will be derived from the lowest pair of vectors. The 19
weight/SC pairs in the 7-35 group are {(3,4-8),(6,4-10),(6,4-11A),(6,4-11B), etc. The
4-22A group contains only one weight/SC pair, {(100,4-22A)}. In the level-three
cross-correlation group to be derived from these two difference groups, 4-22A
participates in each of the 19 SC pairs. With the weight and SC pairs, the group
elements are {(3,100,4-8,4-22A), (6,100,4-10,4-22A), (6,100,4-11A 4-22A), etc.
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EXAMPLE 4.5.1: The 4-class %-vectors, difference vectors and scaled difference vectors of 7-35 and
4-22A, with two rows of indexes. In each vector pair, the upper one belongs to 7-35.
%REL4(7-35,4-22A) = 91. Component C = 100.

o 0000 0 000 1009 330
po 0000 0 000 0000000

=R

003066600336600330 06399 3
000000000000000000 000CO 0

1223445567 8910111112121313141415151616171818191920212222232425262727282929

00 600 00000 63 0911009 0
00 000 0000000900000 0

29

066 6 336 33 3303
0000 0000 000 00 0000

1223445567 8910111112121313141415151616171818191920212222232425262727282929

600 00006 1 0 0
000 00000 0 0

=R

336 330 309120093303
000 000 0C00000000CO

Each tetrad class pair is compared with %REL3, and a level-two cross-correlation
group is derived from it. As an example we examine the pair {4-11B,4-22}. The three
types of vector pairs are given in Ex. 4.5.2.

%REL3(4-11B,4-22A) = 50. The difference group belonging to 4-11B is
{(50,3-2B), (50,3-4B)}. The difference group of 4-22A, in turn, is {(50,3-9), (50,3-11B)}.

The resulting 4-element cross-correlation group contains weight pair / SC pair
elements {(50,50,3-2B,3-9), (50,50,3-2B,3-11B), (50,50,3-4B,3-9), (50,50,3-4B,3-11B)}.

EXAMPLE 4.5.2: The 3-class %-vectors, difference vectors and scaled difference vectors of SCs 4-11B
and 4-22A, with two rows of indexes. In each vector pair, the upper one belongs to 4-11B.
%REL3(4-11B,4-22A) = 50.

f0 025 0 0 025 0 0 25 25 0]
{0 0 0 0 0O 0O 0 O 02525 0 O 025 0O 025 O]

(=)
o
(=]
o
o
o
o

i 2 2 3 3 4 4 5 5 6 7 7 8 8 910 11 11 12

[0 025 0 O 025 0 O O O O O O O O O O O]
[0 0 0 0 0 0 0 0 0 0O O O O 025 0 025 0]

1 2 2 3 3 4 4 5 5 6 7 7 8 8 91011 11 12

[0
{0

50 0 0 050 0 O O O O O O O O O O O]
0 0o 0 0 0O 0 OO O 0O 0 050 0 050 0]

[eNe)

In the 19 level-two cross-correlation groups, the total number of triad class pairs is
167. Each pair gets a %REL2 value and from the two class weights, a proportioned
weight. Similarly, the level-three pairs get their %REL3 values and proportioned
weights. The top-level pair, {7-35,4-22A}, has 91 as its %REL4 value, and as it does
not share level four with any other pairs, its proportioned weight is 100.
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EXAMPLE 4.5.3: RECREL(7-35,4-22A). Branch four, part of the comparisons at levels 4 - 2. Each ele-
ment contains a proportioned weight, a SC pair and the %RELp, value of the pair.

(100,7-35,4-22A,91.4)

(3.1,4-8,4-22A,100.0)
(6.2,3-4A,3-6,66.7),(6.2,3-4A,3-7A7,66.7),(6.2,3-47,3-9,66.7),(6.2,3-4A,3-11B,33.3)
(6.2,3-4B,3-6,66.7),(6.2,3-4B,3-77,66.7),(6.2,3-4B,3-9,66.7),(6.2,3-4B,3-11B,33.3)
(6.2,3-5A,3-6,100.0),(6.2,3-5A,3-72,66.7),(6.2,3-5A,3-9,66.7),(6.2,3-5A,3-11B,66.7)
(6.2,3-5B,3-6,100.0),(6.2,3-5B,3-77,66.7),(6.2,3-58B,3-9,66.7),(6.2,3-5B,3-11B,66.7)

(6.2,4-10,4-22A,75.0)
(11.1,3-2A,3-6,66.7),(11.1,3-2A,3-9,66.7),(11.1,3-2A,3-11B,66.7),(11.1,3-2B,3-6,66.7)
(11.1,3-2B,3-9,66.7),(11.1,3-2B,3-11B,66.7),(11.1,3-7B,3-6,66.7),(11.1,3-7B,3-9,33.3)
(11.1,3-78B,3-11B,33.3)

(6.2,4-11A,4-22A,75.0)
(11.1,3~-22,3-74,33.3),(11.1,3-24,3-9,66.7),(11.1,3-24,3-11B,66.7),(11.1,3-4A,3-7A,66.7)
(11.1,3-4A,3-9,66.7),(11.1,3-4A,3-118B,33.3), (11.1,3-7B,3-74,0.0), (11.1,3-7B,3-9,33.3)
(11.1,3-7B,3-118B,33.3)

(6.2,4-11B,4-22A,50.0)

(25.0,3-2B,3-9,66.7), (25.0,3-2B,3-11B,66.7), (25.0,3-4B,3-9,66.7), (25.0,3-4B,3-11B,33.3)

(3.1,4~13A,4-224,75.0)
(11.1,3-2A,3-6,66.7),(11.1,3-23,3-9,66.7),(11.1,3-2A,3-11B,66.7),(11.1,3-5A,3-6,100.0)
(11.1,3-5A,3-9,66.7),(11.1,3-54,3-11B,66.7),(11.1,3-10,3-6,100.0),(11.1,3-10,3-9,100.0)
(11.1,3-10,3-11B,66.7) ........

The total number of %RELn comparisons in branch four is 187. Ex. 4.5.3 gives a part
of the comparisons as a diagram. Each element contains a proportioned weight, a SC
pair and a %RELp, value. Level structure can be inferred from the indentation.

A weighted value is calculated for each SC pair from its proportioned weight
and %RELp, value. Ex. 4.5.4 shows a part of the branch-four comparisons after this

task has been completed.

EXAMPLE 4.5.4: RECREL(7-35,4-22A). Branch four, part of the comparisons at levels 4 - 2. Each ele-
ment contains a SC pair and a weighted value.

(7-35,4-22A,91.4)

(4-8,4-22A,3.1)

(3-4A,3-6,4.2),(3-4A,3-7A,4.2),(3-47,3-9,4.2), (3-4A,3-11B,2.1),(3-4B,3-6,4.2)

(3-4B,3-7A,4.2),(3-4B,3-9,4.2), (3-4B,3-11B,2.1), (3-5A,3-6,6.2), (3-5A,3-7A,4.2)
(3-5A,3-9,4.2),(3-5A,3-11B,4.2), (3-5B,3-6,6.2), (3-5B,3-7A,4.2), (3-5B,3-9,4.2)

(3-5B,3-11B,4.2)

(4-10,4-222,4.7)
(3-2A,3-6,7.4),{(3-2a,3-9,7.4), (3-2A,3-11B,7.4), (3-2B,3-6,7.4), (3-2B,3-9,7.4)
(3-2B,3-11B,7.4), (3-7B,3-6,7.4), (3-7B,3-9,3.7), (3-7B,3-11B,3.7)

(4-11A,4-22A7,4.7)

(3-22,3-7A,3.7),(3-2A,3-9,7.4),(3-27,3-11B,7.4), (3-42,3-7A,7.4}),(3-4A,3-9,7.4)
(3-4a,3-118B,3.7), (3-7B,3-734,0.0), (3-7B,3-9,3.7), (3-78B,3-11B,3.7)

(4-11B,4-22A7,3.1),

(3-2B,3-9,16.7), (3-2B,3-11B,16.7), (3-4B,3-9,16.7), (3-4B,3-11B,8.3)

(4-13A,4-22A,2.3)
(3-27,3-6,7.4),(3-24,3-9,7.4),(3-2A7,3-11B,7.4),(3-5A,3-6,11.1),(3-53,3~-9,7.4)
(3-5a,3-11B,7.4), (3-10,3-6,11.1}, (3-10,3-9,11.1), (3-10,3-11B,7.4) .......
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EXAMPLE 4.5.5: RECREL(7-35,4-22A). Branch four, values of all comparisons at levels 4 - 2. Updating
the values.

(91.4

(/ (* 3.1 (+ 4.2 4.2 4.2 2.1 4.2 4.2 4.2 2.16.2 4.2 4.2 4.2 6.2 4.2 4.2 4.2)) 100)= 2.
(/ (* 4.7 (+ 7.4 7.4 7.47.47.47.47.43.73.7)) 100) = 2.
(/ (* 4.7 (+ 3.7 7.4 7.47.47.43.70.03.7 3.7)) 100) = 2.
(/ (* 3.1 (+ 16.7 16.7 16.7 8.3)) 100) =1.
(/ (* 2.3 (+7.47.47.411.17.4 7.4 11.111.1 7.4)) 100) =1.
(/ (* 3.1 (+ 4.2 2.1 4.2 4.2 6.2 4.2 4.2 4.2 4.2 0.0 2.12.16.2 4.2 6.2 4.2)) 100)= 1.
(/ (* 4.7 (+ 7.4 3.7 7.47.47.43.77.43.70.0)) 100) = 2.
(/ (* 3.1 (+ 16.7 8.3 16.7 16.7)) 100) = 1.
(/ (* 2.3 (+ 7.4 7.43.711.17.47.43.77.47.4)) 100) =1,
(/ (* 2.3 (+ 7.4 7.4 3.7 11.1 7.4 7.4 3.7 7.4 7.4)) 100) = 1.
(/ (* 4.7 (+ 7.4 7.47.47.47.47.47.43.77.4)) 100) = 2.
(/ (* 2.3 (+ 7.4 7.47.47.47.47.47.47.47.4)) 100) = 1.
(/ (* 4.7 (+ 0.0 8.3 8.3 0.0)) 100) =0.
(/ (* 6.2 (+ 16.7 8.3 16.7 16.7)) 100) = 3.
(/ (* 4.7 (+ 16.7 8.3 16.7 16.7)) 100) = 2.
(/ (* 2.3 (+ 3.7 7.4 7.4 11.1 11.1 7.4 7.4 7.4 0.0)) 100) = 1.
(/ (* 2.3 (+ 7.4 0.0 3.7 3.7 7.47.411.1 7.4 11.1)) 100) = 1.
(/ (* 3.1 (+ 4.2 2.1 4.2 4.2 6.2 4.2 4.2 4.2 2.1 4.2 4.2 4.2 4.2 2.1 4.20.0)) 100)=1.
(/ (* 2.3 (+ 7.4 3.7 7.411.1 7.4 7.4 3.7 7.4 7.4)) 100) = 1.

(/ (* 91.4 (+ 2.07 2.78 2.08 1.81 1.78 1.94 2.26 1.81 1.44 1.44 2.95 1.53 0.78 3.62
2.74 1.44 1.36 1.81 1.44)) 100)

n

(/ (* 91.4 37.08) 100) = 33.89

The updating is begun by taking the sums of weighted values in the level-two cross-
correlation groups and updating the level-three weighted values with them. The
updated level-three weighted values are added together, the sum updating the only
level-four weighted value. These stages are described in Ex. 4.5.5. The SC names are
omitted.

The branch-four value is 33.89.

4.52 Branch Three
The levels within branch three are three and two. The only level-three comparison is

%REL3(7-35,4-22A), having the value 57. The 3C%Vs, difference vectors and scaled

difference vectors of the two classes are in Ex. 4.5.6.
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EXAMPLE 4.5.6: The 3-class %-vectors, difference vectors and scaled difference vectors of 7-35 and
4-22A, with two rows of indexes. In each vector pair, the upper belongs to 7-35. %REL3(7-35,4-22A) =
57.

91111 3
2525 0 O

[0 6 6 0 O
[0 0 o 0 0 0 O

14 3 9 9 0]
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The nonzero scaled difference vector components and their indexes again give the
difference groups. These are {(10,3-2A), (10,3-2B), (10,3-4A), etc., for 7-35, {(29,3-6),
(24,3-7A), (19,3-9), (29,3-11B)} for 4-22A. The resulting level-two cross-correlation
group contains 44 weight pair / SC pair elements, starting with {(10,29,3-2A,3-6),
(10,24,3-2A,3-7A), (10,19,3-2A,3-9), etc.

EXAMPLE 4.5.7: RECREL(7-35,4-22A). Branch three, the comparisons at levels 3 and 2. Each element
contains a proportioned weight, a SC pair and a %RELy, value.

((100,7-35,4-22A,57.1)
((2.9,3-2A,3-6,66.7),(2.4,3-2A2,3-7A,33.3),(1.9,3-2A,3-9,66.7),(2.9,3-2A,3-11B,66.7)
(2.9,3-2B,3-6,66.7),(2.4,3-2B,3-7A,33.3),(1.9,3-2B,3-9,66.7),(2.9,3-2B,3-11B,66.7)
(2.9,3-4A,3-6,66.7),(2.4,3-4A,3-7A,66.7),(1.9,3-4A,3-9,66.7),(2.9,3-4A,3-11B,33.3)
(2.9,3-4B,3-6,66.7),(2.4,3-4B,3-7A,66.7),(1.9,3-4B,3-9,66.7),(2.9,3-4B,3-11B,33.3)

(1.4,3-5A,3-6,100.0),(1.2,3-5A,3-7A,66.7),(0.9,3-5A,3-9,66.7),(1.4,3-5A,3-11B,66.7)
(1.4,3-58B,3-6,100.0),(1.2,3-5B,3-77,66.7),(0.9,3-5B,3-9,66.7),(1.4,3-5B,3-11B,66.7)
(5.7,3-7B,3-6,66.7),(4.7,3-7B,3-74,0.0),(3.7,3-7B,3-9,33.3),(5.7,3-7B,3-11B,33.3)
(1.4,3-8A,3-6,33.3),(1.2,3-87,3-7A,66.7),(0.9,3-8A,3-9,66.7),(1.4,3-8A,3-11B,66.7)
(1.4,3-8B,3-6,33.3),(1.2,3-88B,3-7A,66.7),(0.9,3-8B,3-9,66.7),(1.4,3-8B,3-11B,66.7)
(1.4,3-10,3-6,100.0),(1.2,3-10,3-7A7,66.7),(0.9,3-10,3-9,100.0),(1.4,3-10,3-11B,66.7)
(4.3,3-11A,3-6,66.7),(3.6,3-11A,3-7A,33.3),(2.8,3-11A,3-9,66.7),(4.3,3-11A,3-11B,0.0)))

All 45 branch-three comparisons are given in Ex. 4.5.7. In the example, the propor-
tioned weights have already been calculated and are given with the SC names and
%RELn values. The top-level comparison again receives the proportioned weight
100.

A weighted value is calculated for each SC pair from its proportioned weight
and %RELp, value. Ex. 4.5.8 gives the branch-three comparisons after this phase has
been completed.
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EXAMPLE 4.5.8: RECREL(7-35,4-22A). Branch three, the comparisons at levels 3 and 2. Each element
contains a SC pair and a weighted value.

((7-35,4-223,57.1)

(3-2A,3-6,1.9), (3-2A,3-74,0.8), (3-2A,3-9,1.2), (3-2A,3-11B,1.9), (3-2B,3-6,1.9),
(3-2B,3-74,0.8), (3-2B,3-9,1.2),(3-2B,3-11B,1.9), (3-4A,3-6,1.9), (3-4A,3-7A7,1.6),
(3-4a,3-9,1.2), (3-4A7,3-11B,1.0), (3-4B,3-6,1.9),(3-4B,3-74,1.6), (3-4B,3-9,1.2),
(3-4B,3-11B,1.0), (3-5A,3-6,1.4), (3-5A,3-74,0.8), (3-5A,3-9,0.6}, (3-5A,3~11B,1.0),
(3-5B,3-6,1.4), (3-5B,3-74,0.8), (3-5B,3-9,0.6), (3-5B,3-11B,1.0}, (3-7B,3-6,3.8),
(3-7B,3-7A,0.0), (3-78B,3-9,1.2),(3-7B,3-11B,1.9), (3-83,3-6,0.5), (3-8A,3-77,0.8),
(3-8a,3-9,0.6), (3-8a,3-11B,1.0), (3-8B,3-6,0.5), (3-8B,3-7A4,0.8}), (3-8B,3-9,0.6),
(3-88,3-11B,1.0), (3-10,3-6,1.4), (3-10,3-7A,0.8}, (3-10,3-9,0.9}, (3-10,3-11B,1.0),
(3-11A,3-6,2.9) (3-112,3-7A,1.2),(3-11A,3-9,1.9), (3-11A,3-11B,0.0) ) ))

Updating is less complicated than in branch four, as the number of levels is only
two. All 44 level-two weighted values are added together, the sum updating the one
and only level-three weighted value. The final branch-three value is 30.49. These
steps are described in Ex. 4.5.9. The SC names are omitted.

EXAMPLE 4.5.9: RECREL(7-35,4-22A). Branch three, the comparisons at levels 3 and 2. Updating the
values.
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= (/ (* 57.1 53.39) 100) = 30.49

4.5.3 Branch Two

Branch two consists of only one comparison, %REL2(7-35,4-22A). The value is 17.
The two dyad class %-vectors and the absolute values of the component pair differ-
ences are given in Ex. 4.5.10.

EXAMPLE 4.5.10: The dyad class %-vectors of 7-35 (top) and 4-22A. %REL)(7-35,4-22A) = 17.

[10 24 19 14 29 5]
[_0 33 17 17 33 0]
+]10 9 2 3 4 5{/2 =17

454 The Final RECREL Value

To get the final value of the entire comparison, the branch values are added together
and divided by three. RECREL(7-35,4-22A) = (33.89 + 30.49 + 17)/3 = 27. To reach
this value, %RELn was evaluated 233 times.
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4.6 RECREL FORMALISATIONS

The following section 4.6.1 contains a verbal algorithm, and in section 4.6.2 the al-
gorithm is converted to a recursive Common Lisp function.

4.6.1 An Algorithm: RECREL in Ten Phases

(1) Select the SCs {X,Y} to be compared. Determine the highest branch branch. If
branch = 2, RECREL(X,Y) = %REL2(X,Y). Otherwise, within branch branch, set the
highest level level = branch. In each branch, set the proportioned weight wp of {X,Y}
to 100.

(2) Set the variable {SC1,5C2} to {X,Y}. Set the variable b to branch. Set the variable n

to level.

(3) Associate {SC1,5C2} with its weighted value vw = (v * wP)/ 100. v =
%RELR(SC1,5C2). wp = the proportioned weight of {SC1,5C2}.

(4) Derive scaled difference vectors from nC%V(SC1) and nC%V(SC2). Collect the
nonzero components and their indexes from the scaled difference vectors. Identify
the SCs to which the indexes refer. Interpret the two groups of component-index
pairs to be two difference groups, where each weight w is associated with a SC.
Make a cross-correlation group. Replace the two weights w1 and w2 in each pair
with the proportioned weight wp = (w1 * w2)/100.

(5) Set new n by decreasing the current n by 1. Obtain one or more cross-correlation
groups formed during the previous phase. In turn, set each SC pair in the group or
groups to be {SC1,5C2}. If n > 2, take each {SC1,5C2} through phases 3 and 4. Ifn = 2,
take each {SC1,5C2} through phase 3 only and go then straight to 6. Retain the cross-

correlation group composition, knowing which pairs constitute a given group.

(6) Collect all cross-correlation groups C1, C2,..Cm whose SC pairs were compared
with the current-n %RELp. Associate each cross-correlation group Cj with the sum s
of weighted values in it. Take the cross-correlation group C1 and seek the SC pair P1
that was compared with %RELn+1 at an earlier stage and from which C1 was de-
rived. Obtain the weighted value vy of P1. Update vw with the C1 sum s1 by calcu-
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lating (s1 * vw)/100. Consider the updated value to be the new weighted value v
of P1. Repeat this for the rest of the cross-correlation groups C2,..Cm and the corre-
sponding SC pairs P2,..Pm from which the groups were derived.

If (b-n) = 1, consider the updated weighted value of the one and only SC pair
P = {X,Y} to be the final value of the branch b, and go straight to 8. Otherwise, go to
7.

(7) Set new n by increasing the current one by 1. Go to 6.

(8) Set new b by decreasing the current one by 1. If b is now 2, go straight to 10.
Otherwise, setntob and go to 9.

(9) Set {SC1,SC2} to {X,Y}. Go to 3.

(10) Calculate branch 2 by evaluating %REL2(X,Y). Calculate the final RECREL
value by taking the average of the individual branch values.

4.6.2 RECREL as a Common Lisp Function

For programming convenience, the function may execute some internal phases of a
RECREL comparison in an order that differs slightly from the one given in the algo-
rithm above. This has no effect on the results. The numbers in parentheses preceded
by semicolons refer to comments below.

The function is intended to be as complete as possible, performing indepen-
dently almost all phases of a RECREL comparison.? Two external non-standard
Common Lisp functions are evoked during its evaluation, however. Incorporating
them would not have been of benefit from the point of view of clarity of the code.
These are (a) the function cardinality?, returning the cardinality of the argument
SC, (b) the function cardinality-class, returning all SCs in the cardinality-class n,
2=n<12

Furthermore, the %-vectors needed during the comparisons are stored in
a table named *%-vec-hash*. To retrieve the n-class %-vector of SC X, the expression
(nth (- n 2) (gethash X *%-vec-hash*)) is evaluated.

9 The function is made for demonstrational purposes only. Using it to perform RECREL comparisons
between SCs of large cardinalities is impossible without a computer having considerable computing
and memory capacities. The entire set of RECREL values was originally calculated with the help of a
program using tables of precalculated branch values.
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(defun RECREL (SCl SC2) (1)
{let* ({cardl (cardinality? SCl1l)) (card2 (cardinality? SC2)) ; (2)
{branch (if (/= cardl card2) (min cardl card2) (1l- cardl)))
(startl (list (list 100 ScCl))) (start2 (list (list 100 sc2))) B-v-1)
(if (>= 2 branch) i (3)

(round (/ (apply #'+ (mapcar #'(lambda (numl num2) (abs (- numl num2)))
{(nth 0 (gethash SCl1 *%-vec-hash*))
(nth 0 (gethash SC2 *%-vec-hash*)))) 2))

(loop i (4)
(if (= 1 branch) ; (8)
(return (round (/ (apply #'+ B-v-1) {(length B-v-1)}}) ; (9)
{progn
(push
(labels
({(levels (w+SC-1lsl w+SC-1s2 level) ;i (5)
{(let ((B-v 0) vecl vec2 (card-cl (cardinality-class level)) ; (5.2)
(i 0) dnow DGl DG2 (%-v 0))
(dolist (w+SCl w+SC-1sl1l B-v) ;i (5.6)
(setf vecl (nth (-~ level 2)

(gethash (second w+SCl) *%-vec-hash*))})
(dolist (w+SC2 w+SC-1s2)
(setf vec2 (nth (- level 2)
(gethash (second w+SC2) *%-vec-hash*}))

(dolist
(item vecl (if (= 2 level)
(incf B-v ;i (5.8)
(/ (* (/ (* (first w+sCl) (first w+SC2))
100) %-v) 100))
(incf B-v
(/ (*
(/ (* (/ (* (first w+SC1)
(first w+SC2)) 100) %-v) 100)
(levels ; (5.7)
(mapcar #'(lambda (pair) ; (5.5)
(cons (* (/ (first pair) %-v) 100)
(rest pair))) DGI1)
(mapcar #'(lambda (pair)
{cons (* (/ (first pair) %-v) 100)
(rest pair))) DG2)
(1~ level))) 100))))
(setf dnow (- item (pop vec2)))
(cond
((plusp dnow) (incf %-v dnow) ; (5.3)
(push (list dnow (nth i card-cl)) DG1l) (incf i)) ; (5.4)
( (minusp dnow)
(push (list (- dnow) (nth i card-cl)) DG2) ({inecf 1)) ; (5.4)

(£t (incf i))))
(setf DGLl nil DG2 nil i 0 %-v 0))))))

(levels startl start2 branch)) : (5.1)
B-v-1) ; (6)
(setf branch (l- branch)))))}})}) i (1)
The comments

(1) The argument list is given here, containing two SCs SCI and SC2. (2) The cardi-
nalities of the SCs are found out and the highest branch branch determined. The
weight 100 is associated with SC1 and SC2, resulting in start1 = ((100 SC1)) and start2
= ((100 SC2)). (3) If branch = 2, the %REL) value between SCI and SC2 is established
and returned as the final RECREL value. (4) If branch > 2, the evaluation of the func-
tion continues.

(5) levels is a recursive local function within RECREL, returning branch val-
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ues. Its arguments w+SC-Is1 and w+SC-Is2 are difference groups with other names,
containing one or more weight/SC pairs.10 The third argument, level, takes its value
from the current level. (5.1) Before the processing of a given branch is begun with
levels, the arguments defining the top-level comparison are fetched from here. The
first w+SC-Is1 = startl = ((100 SC1)) and the first w+SC-Is2 = start2 = ((100 SC2)). level
= branch. (5.2) Among the levels variables: B-v, for Branch value; card-cl, for cardinality
class, for identifying the SC names of the difference group classes; DGI and DG?2, for
Difference Group 1 and 2; %-v, for %RELy value.

During its various stages, levels (5.3) calculates %RELp, values, (5.4) gathers
weight/SC pairs from %-vectors, (5.5) scales the weights to produce proper differ-
ence groups, (5.6) forms cross-correlations groups, (5.7) calls itself with new argu-
ments to perform lower-level comparisons and derive difference groups, cross-cor-
relation groups, etc., from these, (5.8) calculates proportioned weights and weighted
values, updating the latter until a final branch value is reached.

(6) When the value of a given branch is found out, it is stored in B-v-I, for
branch value list. (7) branch is decreased by one. (8) branch is tested. If it is higher than
1, the comparison continues from Levels. If it is 1, (9) the final value for
RECREL(SC1,5C2) is established by taking the sum of the B-v-I values, dividing it by
the length of the B-v-I list and rounding the quotient.

4.7 RECREL AND THE EVALUATION CRITERIA

RECREL meets all criteria defined in section 2.3.

10 Renaming these difference groups was necessary to avoid name conflicts. Other difference groups
are being processed simultaneously with w+SC-Is1 and w+SC-Is2.
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THE RECREL VALUES

51 INTRODUCTION

In this chapter we will examine the whole set of 61,075 values RECREL produces.
We will start at a rather general level, by listing all distinct RECREL values and
seeing how they are distributed: what is the number of SC pairs sharing a given
value, what is the percent of all SC pairs having a value equal to or lower than that
value, etc? After this, the value groups #n/#2-#12, 2 < n < 12, will give us an
approximate idea about what sort of RECREL values SCs of different cardinalities
usually produce. Within each cardinality-class, we will identify the SCs having
individual value groups X/#2-#12 with lowest and highest average values. The
#n/#m value group information will follow, containing averages, minimum and
maximum values, the SC pairs producing the extrema, and the numbers of distinct
values in each value group. After this, RECREL will be compared with a
modification of Lewin's REL measure.

In sections 5.3 - 5.7 we will investigate how RECREL similarity correlates
with other aspects of SC similarity. Our starting point is a routine observation in the
peset-theoretical literature: pairs of SCs enjoying a given relation can be deemed
similar. We collect all pairs of SCs enjoying the given relation, perform RECREL
comparisons on them and draw conclusions. Typically, we observe whether the val-
ues are lower than average, whether they are consistently low or fluctuate between
low and high values, whether SCs of small cardinalities produce results different
from those of large cardinalities, whether the classes are each other's closest
RECREL counterparts, etc. We will examine five types of case: inversionally related

126



RECREL Values 127

SCs, Z-related SCs, complement pairs, SCs of cardinality n and their subset-classes
of cardinality n-1, and M-related SCs. The results are summarized in section 5.8.

In the tables given in this chapter, average values, percentiles, etc., will usu-
ally be rounded to the nearest integer. At times, if greater accuracy is thought to be
of benefit, decimal numbers will also be used. Many tables identify individual SC
pairs with values of special interest (like minima or maxima). Such a value may be
unique for the pair, or it may be shared by a group of pairs.

5.2 THE RECREL VALUE GROUP #2-#12/#2-#12

RECREL, like TMEMB, ATMEMB, REL and T%REL, is a total measure being able to
discriminate between inversionally related and Z-related SCs. The scale of values
comprises the integers between 0 and 100, inclusive. Some numbers between the ex-
trema do not appear in the scale, however. The values from the 61,075 SC pair com-
parisons are distributed so that the number of distinct values is 89. They are listed in
Table 5.1.

The average of all values is approximately 40. The median, having half of the
values below it and the other half above it, is 36. As can be seen from Table 5.1, the
number of SC pairs with the value 0, indicating maximal similarity, is 15. Among
these are the seven pairs of inversionally related 3-pc classes, having always identi-
cal 2C%Vs, as well eight other pairs: {12-1,11-1}, {6-35,5-33}, {4-9,3-5A}, {4-9,3-5B},
{4-25,3-8A}, {4-25,3-8B}, {4-28,3-10} and {3-12,2-4}. Among other notably low values
are RECREL(6-20,5-21A) = RECREL(6-20,5-21B) = 2, RECREL(4-2A 4-2B)
RECREL(4-22A ,4-22B) = RECREL(5-21A,5-21B) = 4, and RECREL(8-28,7-31A)
RECREL(8-28,7-31B) = 6, etc.

Cases like these have an extremely small representation, since values up to 10

constitute only a fraction of one percent of all values. The values up to 20 still consti-
tute less than 3% of all values. Above twenty the frequencies of the values start to
grow rapidly, to the extent that values up to 50 constitute already more than 80% of
all values. A full quarter of SC pairs have their values within the range 32-37 only.
The value with the highest frequency is 32, belonging to 2,786 pairs. The most dis-
similar 10% of the SC pairs is represented by a broad range of values from approxi-
mately 58 to 100. The value 100, indicating maximal dissimilarity and taking place
only between SCs having completely disjoint subset-class contents, belongs to 220
pairs. Most of these pairs contain at least one dyad class.
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TABLE 5.1: RECREL value distribution. The four columns list (1) the RECREL values, (2) the number
of SC pairs having each value, (3) the percentual shares the column 2 entries have of the total number
of 61,075 SC pairs, (4) the percentage of all 61,075 values which are equal to or lower than the corre-
sponding values in column 1.

VAL # % Pctl. VAL # % Pctl. VAL # % Pctl.
0 15 0.02 0.02 33 2478 4.06 37.28 63 218 0.36 92.99
2 2 0.00 0.03 34 2542 4.16 41.44 64 115 0.19 93.17
4 3 0.00 0.03 35 2755 4.51 45.95 65 120 0.2 93.37
6 2 0.00 0.04 36 2451 4.01 49.97 66 47 0.08 93.45
7 1 0.00 0.04 37 2477 4.06 54.02 67 686 1.12 94.57
8 15 0.02 0.06 38 2217 3.63 57.65 68 184 0.3 94.87
9 14 0.02 0.09 39 2069 3.39 61.04 69 38 0.06 94.93
10 i6 0.03 0.11 40 1913 3.13 64.17 70 171 0.28 95.21
11 3 0.00 0.12 41 1703 2.79 66.96 71 137 0.22 95.44
12 20 0.03 0.15 42 1714 2.81 69.77 72 58 0.09 95.53
13 52 0.09 0.23 43 1272 2.08 71.85 73 238 0.39 95.92
14 73 0.12 0.35 44 1331 2.18 74.03 74 6 0.01 95.93
i5 115 0.19 0.54 45 1196 1.96 75.99 75 71 0.12 96.05
16 161 0.26 0.81 46 1099 1.8 77.79 76 134 0.22 96.27
17 253 0.41 1.22 47 925 1.51 79.3 78 4 0.01 96.28
18 282 0.46 1.68 48 792 1.3 80.6 79 55 0.09 96.37
19 322 0.53 2.21 49 769 1.26 81.86 80 512 0.84 97.2

20 461 0.75 2.96 50 1265 2.07 83.93 81 230 0.38 97.58
21 501 0.82 3.78 51 533 0.87 84.8 82 179 0.29 97.87
22 683 1.12 4.9 52 500 0.82 85.62 83 297 0.49 098.36
23 877 1.44 6.34 53 449 0.74 86.35 86 199 0.33 98.69
24 952 1.56 7.9 54 554 0.91 87.26 87 219 0.36 99.04
25 1170 1.92 9.81 55 477 0.78 88.04 89 26 0.04 99.09
26 1467 2.4 12.21 56 422 0.69 88.73 90 223 0.37 99.45
27 1680 2.75 14.97 57 396 0.65 89.38 91 7 0.01 99.46
28 1728 2.83 17.79 58 370 0.61 89.99 92 14 0.02 99.49
29 1843 3.02 20.81 59 294 0.48 90.47 93 78 0.13 99.61
30 2358 3.86 24.67 60 622 1.02 91.49 95 16 0.03 99.64
31 2436 3.99 28.66 61 266 0.44 091.92 100 220 0.36 100.0

32 2786 4.56 33.22 62 431 0.71 92.63

Table 5.2, listing the value groups #n/#2-#12, 2 <n < 12, shows that a set-class rep -
resenting a small cardinality, when compared to the rest of the SC universe, pro-
duces on average considerably higher values than does a SC of a large cardinality.
The three value groups #n/#2-#12, where n is 12, 11 or 10, produce a uniform aver -
age value, 33. This figure is only about 40% of the corresponding dyad class average
83. Also, among SCs of large cardinalities, all individual value groups X/#2-#12
produce reasonably similar averages. For example the average 33 of the value group
9-11B/#2-#12, being the lowest one for any nonad class, is only slightly lower than
the highest nonad class average 35, being that of the value group 9-12/#2-#12.

Value groups #n/#2-#12, 3 < n < 6, contain much more variety. For example
the lowest hexad class average, 34, which belongs to the value group 6-Z40B/#2-
#12, is already considerably lower than the corresponding maximum, 59 of 6-35/#2-
#12. The largest difference between lowest and highest averages is in the cardinal -
ity-class 4. The minimum, 37 of 4-Z29B/#2-#12, is only about half of the maximum,
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73 of 4-28/#2-#12. The very highest individual average, 91, belongs to SC 2-6. Even
with its closest RECREL counterparts the "tritone class” produces very high values,
from 67 upwards. Along with 2-6, other transpositionally symmetric SCs, such as
3-12, 4-28, 6-35 and 8-28, are also well represented among the SCs with highest aver-
ages.1

TABLE 5.2: Aspects of the RECREL value groups #n/#2-#12 and the individual value groups X/#2-
#12. The seven columns list (1) the value groups #n/#2-#12, (2) numbers of values in the value
groups in column 1, (3) average values of the value groups in column 1, (4) the SCs X of cardinality n
with the lowest individual value group X/#2-#12 averages, (5) the averages belonging to the SCs in
column 4, (6) the SCs X of cardinality n with the highest individual value group X/#2-#12 averages,
(7) the averages belonging to the SCs in column 6.

val.gr. # average min-SC ind.min max~-SC ind.max
#12/#2-#12 349 33 12-1 33 12-1 33
#11/#2-#12 349 33 11-1 33 11-1 33
#10/#2-#12 2079 33 10-1 33 10-6 33
#9/#2-#12 6460 34 9-11B 33 9-12 35
#8/#2-#12 14104 35 8-729B 33 8-28 38
#7/#2-#12 20889 36 7-Z36B 33 7-33 42
#6/#2-#12 24760 38 6-740B 34 6-35 59
#S5/#2-#12 20889 40 5-738B 36 5-33 58
#4/#2-#12 14104 46 4-729B 37 4-28 73
#3/#2-#12 6460 56 3-11B 49 3-12 82
#2/#2-#12 2079 83 2-5 82 2-6 91

We criticized the two preliminary versions of RECREL, %RELn and T%REL, for
producing values which were too low and too high, respectively (sections 3.4.2.1
and 3.7.4.1). When we compare the %REL2 and T%REL value group information ta-
bles 3.2 and 3.18 to the corresponding RECREL Table 5.3, we note that the RECREL
averages are usually somewhere between their %REL2 and T%REL counterparts.
For example the %REL? averages in the value groups #4/#n,5 <n <9, vary approx -
imately between 32 and 39, their T%REL counterparts approximately between 67
and 70. The corresponding RECREL averages lie between 43 and 46. The %REL? av-
erages in the value groups #7/#n, 7 < n <9, lie approximately between 11 and 13,
their T%REL counterparts approximately between 48 and 53. The corresponding
RECREL averages are between 27 and 28. And so on.

Predictably, RECREL repeats the general observation of many similarity mea-
sures, by deeming SCs of the smallest cardinalities highly dissimilar on average, and
SCs of the largest cardinalities highly similar on average.

1 For details on transpositionally symmetric SCs, see for example Rahn (1980:92) or Castrén (1989:55-
87).
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In RECREL value groups #n/#m having a large difference between n and m, neither
the averages nor the minimum values are especially low. The problem of %REL),
i.e., counterintuitively low values between SCs of greatly differing cardinalities,
does not arise here. For example the lowest value in any of the value groups #2/#n,
5 <n <12, is 60. Among the value groups #3/#n, 7 < n < 12, the lowest value is 33,
among the value groups #4/#n, 8 <n < 12, the minimum is 29, etc.

By examining the columns of Table 5.3 from top to bottom, we see that the
average values in the highest value groups (#n/#n) are usually of the same approx -
imate size as those in the lower value groups (#n/#n+1, #n/#n+2,... #n/#12). In
contrast, the minimum and maximum values in the two highest groups tend to be
clearly lower and slightly higher respectively than their counterparts in the lowest
groups of the corresponding column. This indicates that the ranges of values are
largest when we compare exactly or approximately equal-sized SCs, which is an in-
tuitively acceptable result.

The transpositionally symmetric SCs often produce a small handful of excep-
tionally low values and a great number of very high values with other SCs. As a re-
sult, they have a disproportionately large representation among the pairs with min-
imum and maximum values in Table 5.3. Consider, for example, column #6. Every
SC pair with the maximum value in all seven cells contains SC 6-35, the whole-tone
class. Moreover, in three cells out of five in the row #6, 6-35 participates in produc-
ing the lowest value in the value group. In the cells of row #8, the octatonal class 8-28
participates five times in producing the pair with the minimum value, and in col-
umn #8 the same class is found in every pair having the maximum value. Its com -
plement, the diminished seventh class 4-28, is in every maximum pair of column #4,
and the complement classes 3-12 and 9-12 are prevalent in the maximum pairs of
columns #3 and #9, respectively, etc.

5.2.1 RECREL and REL'

Let use briefly compare RECREL and REL. The latter was the only previously pre-
sented measure we approved during the evaluations in chapter 3. Because original
REL values are somewhat difficult to relate to RECREL values - the scale is from 0 to
1 and increasing values indicate increasing similarity - we modify REL by subtract-
ing each value from 1 and multiplying the difference by 100. We will call the modifi-
cation REL'. Its scale of values is identical to that of RECREL, the end points being 0
and 100 and increasing values indicating increasing dissimilarity. The results are
compiled under Tn-classification. The value group information is given in Table 5.4.
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TABLE 5.4: The REL' value groups #n/#m, 3 <n,m < 9. Lower values indicate higher degrees of simi -
larity. In each table cell, clockwise from top left: the lowest and highest values, the number of distinct
values, the average. C = 100.

#3
25 C
#3168.00 7 #4
wal ] c |15 87
58.37 21 [S4.18 36 #5
4s[20 84 [8 88 [14 81
55.18 31 |49.82 63 [45.75 57 #6
s|28 85 [12 90 |2 83 |14 86
55.37 38 [50.36 57 |44.14 68 |40.75 57 #7
w[32 80 [35 _ 77|27 713 w59 55
55.93 30 [51.7 38 |44.82 43 |38.25 57 |32.47 38 48
4al®® 81 (45 77 (35 74 [18 78[5 55 |10 50
57.23 22 [54.44 28 |48.16 34 [40.46 47 |30.72 44 |25.15 36 #9
4|33 7 |5t 79 (46 69]36 73 [22 516 55 |6 30
58.6 14 |57.00 21 [51.91 19 |44.27 20 |32.63 29 |22.06 33 | 14.19 16

The two tables show that in a clear majority of cases, RECREL averages, minima and
maxima are lower than their REL' counterparts. This, no doubt, is due to applying
the non-common subset-class criterion C6. REL' value groups have lower averages
in only two cases, #8/#9 and #9/#9. RECREL maxima are equal to or above their

REL' counterparts only in the seven value groups #3/#n. In the large-cardinality
value groups REL' maxima are almost suspiciously high. In the group #8/#9, for ex -
ample, the maximum is 55.

An interesting observation is that the ways in which the corresponding en-
tries relate to each other do not always seem to create patterns. This makes compar-
isons between the measures extremely complicated. In the two columns #4/#n, for
example, RECREL minima are usually clearly lower than their REL' counterparts.
The REL' value group #4/#5 minimum, however, is below its counterpart, and the
#4/#6 entry for RECREL is only slightly lower. In the two rows #9/#n, in turn, the
differences between corresponding averages are small when n is 3, 8 and 9. When n
is 4, 5 or 6, the differences are well over 10, etc. It is difficult, on the basis of the value
group analysis, to regard one measure as better than the other.

5.3 RECREL VALUES BETWEEN INVERSIONALLY RELATED SCS

RECREL values belonging to pairs of inversionally related SCs are usually not uni-
form in a single value group.2 This was also the case with ATMEMB, REL and

2 Inversionally symmetric SCs, reproducing themselves under inversion, are excluded from the com-
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T%REL. Table 5.5 shows how the RECREL values belonging to inversionally related
pairs vary within the value groups #n/#n, 3 <n < 9. #3/#3 is the only value group
within which the values produced by the I-pairs indeed are uniform, being instances
of the value 0. In the other value groups, the distances between the lowest and high-
est values range between an extremely narrow 1, in #9/#9, and a rather wide 21, in
#4/#4. In the latter case, the two pairs with the maximum value 25 contain the I-re -
lated "all-interval tetrachords" {4-Z29A,4-Z29B} and {4-Z15A 4-Z15B}. 25 is the high-
est value among all 128 I-pairs.

Comparing the average values (column 7) to their counterparts in the corre-
sponding #n/#n cells in Table 5.3 shows that the I-pair averages are considerably
below the #n/#n averages. For example the highest I-pair average within a single
value group, 17 in #6/#6, is only about half of the entire #6/#6 average, 33. Even
the I-pair maxima in column 6 of Table 5.5 are clearly below the #n/#n averages.
Note also that in Table 5.3, every comparison group #n/#n containing inversionally
related pairs has one such pair as the pair with the lowest value. The percentile col-
umn 8 in Table 5.5 indicates that within its comparison group, a pair with the aver-
age I-pair value or lower belongs to a very small percentage of most similar pairs.
According to Table 5.1, a pair with a value equal to or lower than the average of all
128 I-pair values, 14, belongs to 0.35% of most similar pairs.

TABLE 5.5: RECREL values indicating the highest, lowest and average degrees of similarity among
pairs of inversionally related SCs. The eight columns list (1) the comparison groups #n/#n containing
the inversionally related SCs and, as the lowest entry, the cardinality-class range #3-#9, (2) the num -
bers of inversionally related SC pairs in the comparison groups in column 1, (3) the most similar in-
versionally related SC pairs in the comparison groups, (4) the values belonging to the pairs in column
3, (5) the most dissimilar inversionally related SC pairs in the comparison groups, (6) the values be-
longing to the pairs in column 5, (7) the average values of all inversionally related SCs in the compar-
ison groups, (8) the percentages of all SC pairs in the corresponding comparison groups with values
equal to or lower than the values in column 7.

C.Group # Most Simil. Value Most Diggimil. Value Avg. Pctl.
#9/#9: 7 {9-8A,9-8B} 8 {9-11a,9-11B} 9 9
#8/#8: 14 {8-19A,8-19B} 11 ({8-Z29A,8-z29B} 18 14
#7/#7: 28 {7-7A,7-7B} {7-238A,7-238B} 17 14
#6/#6: 30 {6-14A,6-14B} {6-Z40A, 6~240B} 22 17
#5/#5: 28 {5-21A,5-21B} {5-29A,5-29B} 20 14
#4/#4: 14 {4-2A,4-2B} {4-729A,4-729B} 25 14
#3/#3: 7 {3-2A,3-2B} {3-11a,3-11B} 0 0
#3-#9: 128 {3-2A,3-2B} {4-729A,4-7Z29B} 25 14

O OB OO
I BNP R P

Given, in turn, each inversionally non-symmetric SC X, its inversionally related class
I(X) and its individual RECREL value group X/#2-#12, the average number of val -

parisons in the present section.
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ues below the RECREL(X,I(X)) value in the value group is only 0.8. This figure is
considerably lower than its counterparts produced by ATMEMB, REL and T%REL,
being 11, 18 and 4, respectively.3 It is always true that if X/#2-#12 contains n values
below the RECREL(X,I(X)) value, also I(X)/#2-#12 will contain n values below the
RECREL(I(X),X) value.

Out of the 128 I-related pairs, no less than 102 are those where the SCs are
each other's closest RECREL counterparts. For the other three similarity measures
mentioned above, the corresponding numbers are 29, 11 and 62 out of 128, respec-
tively. There are only 26 I-pairs where the SCs are not each other's closest RECREL
counterparts. In value group 6-27A/#2-#12 there are 12 values below the
RECREL(6-27A,6-27B) value 21, the largest such number. Among pairs containing
6-27A and with a value below 21 are, for example, {6-27A,7-31A}, with value 13, and
{6-27A,8-28}, with value 17. Other SCs which have many values below the I-coun-
terpart value are, for example, 6-5A and 6-18A. Both have 10 values below the I-
counterpart value.

Given an inversionally symmetric SC S and two inversionally non-symmetric
SCs X and Y, it is always true that RECREL(S,X) = RECREL(S,I(X)), and that
RECREL(X,Y) = RECREL(I(X),I(Y)). RECREL(X,Y) may or may not be
RECREL(XI(Y)).4

5.4 RECREL VALUES BETWEEN Z-RELATED SCS

When Z-related SCs are investigated under Tn-classification, the task differs from
the one under Tpn/I-classification in one respect, i.e., one SC can have two Z-coun-
terparts. Thus, for example, one of the "all-interval tetrachords," 4-Z15A, is Z-related
to both 4-Z29A and 4-Z29B. An inversionally non-symmetric SC with Z-counter-
parts usually has two of them, the counterparts constituting an I-pair. An inversion-
ally symmetric SC with Z-counterparts has usually just one, also an inversionally
symmetric SC. There are two exceptions, however. The SC 5-Z12, being inversion-
ally symmetric, is Z-related to the inversionally related classes 5-Z36A and 5-Z36B.
Likewise, the inversionally symmetric SC 7-Z12 is Z-related to the inversionally re-
lated classes 7-Z36A and 7-Z36B. Altogether, the number of Z-related pairs (Z-pairs)
under Tn-classification is 61. The number of distinct SCs participating in these pairs
is 72.

3 For ATMEMB and REL we counted values exceeding the {X,1(X)} value, of course.
4 The formalisations were obtained through exhaustive computer searches.
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The RECREL values belonging to Z-related pairs in a single #n/#n comparison
group are not uniform. This was also the case with ATMEMB, REL and T%REL.
Obviously, the possibility of having two Z-counterparts gives rise to a question:
Given an inversionally non-symmetric SC X and its two inversionally related Z-
counterparts Y1 and Y2, is RECREL(X,Y1) always RECREL(X,Y2)?> The answer is
no. The two values are different in every case. Let the value RECREL(X,Y1) be the
higher one of the two. On average, RECREL(X,Y1) - RECREL(X,Y?2) = 6.

The smallest difference is produced by the case RECREL(6-Z44A,6-Z19A) -
RECREL(6-Z44A,6-Z19B) = 15 - 14 = 1. The highest difference, in turn, is produced
by RECREL(4-Z15A 4-Z29A) - RECREL(4-Z15A,4-Z29B) = 25 - 8 = 17. We saw in
section 5.3 above that the two inversionally related "all-interval tetrachord" pairs
had the highest value, 25, among all I-pairs. Each of these four SCs is considerably
closer to one of its two Z-counterparts than to its I-counterpart.

Comparing corresponding column 7 entries in tables 5.5 and 5.6 shows that
the Z-pairs do not have quite as low average values as did the I-related pairs. Still,
pairs with the average Z-pair values or below are among the most similar in their
comparison groups (Table 5.6, column 8). The highest average, 22, belongs to the 6-
pc Z-pairs, but even that value places a pair in the 10% of closest pairs in the com-
parison group #6/#6.

TABLE 5.6: RECREL values indicating the highest, lowest and average degrees of similarity among
pairs of Z-related SCs. The eight columns list (1) the comparison groups #n/#n containing the Z-re -
lated SCs and, as the lowest entry, the cardinality-class range #4-#8, (2) the numbers of Z-related SC
pairs in the comparison groups in column 1, (3) the most similar Z-related SC pairs in the comparison
groups, (4) the values belonging to the pairs in column 3, (5) the most dissimilar Z-related SC pairs in
the comparison groups, (6) the values belonging to the pairs in column 5, (7) the average values of all
Z-related SC pairs in the comparison groups, (8) the percentages of all SC pairs in the corresponding
comparison groups with values equal to or lower than the values in column 7.

C.Group Most Simil. Value Most Dissimil. Value Avg.Pctl.
#8/#8 {8-729A,8-Z15B} 12 {8-729A,8-215A} 18 15 5

#
4
#7/#7 7 {7-237,7-217} 13 {7-z238a,7-218B} 21 17 4
#6/#6 39 ({6-Z38,6-7Z6} 13 {6-246B, 6-7224A} 27 22 10
#5/#5 7 {5-237,5-217} 12 {5-238B,5-218a} 25 19 3
#4/#4 4 ({4-229B,4-Z15A} 8 {4-229B,4-Z215B} 25 16 2
#4-#8 61 {4-729B,4-Z15A} 8 {6-246B,6-224A} 27 20 -

The values of all 61 Z-pairs range between RECREL(4-Z29B,4-Z15A) = 8 and
RECREL(6-Z46B,6-Z24A) = 27. Within the value groups #n/#n, the distances be -
tween the lowest (column 4) and highest (column 6) Z-pair values vary from 6

5 Cases where X is inversionally symmetric do not have to be examined, because RECREL(X,Y1) is
automatically RECREL(X,Y?).
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(#8/#8) to 17 (#4/#4). Even the maxima are comfortably below the value group
#n/#n averages in Table 5.3. In both column 3 and column 5, the SCs in the pairs
belonging to #8/#8 and #7/#7 are complements of the classes in the pairs belonging
to #4/#4 and #5/#5, respectively.

Given, in turn, each Z-related SC pair {Z1,Z2} and the two individual
RECREL value groups Z1/#2-#12 and Zp/#2-#12, the average number of values
below the RECREL(Z1,Z2) value in each of the two value groups is 10. The corre-
sponding number for T%REL was the same, for ATMEMB and REL (number of val-
ues exceeding the {Z1,Z2} value) 20 and 30, respectively.

There are 32 SCs which produce their lowest RECREL values with their Z-
counterparts, or if they have two, with the closer counterpart. SC 6-Z10A is at the
other end of the scale, as it was for ATMEMB and REL, too. In the value group
6-Z10A /#2-#12 there are 49 values below the RECREL(6-Z10A,6-Z39A) value 27.
And as with ATMEMB, REL and T%REL, the numbers are not necessarily the same
for the two Z-counterparts. In 6-Z39A/#2-#12 there are 40 values below the
RECREL(6-Z39A,6-Z10A) value.

5.5 RECREL VALUES BETWEEN COMPLEMENT CLASSES

Under Tn-classification, each inversionally non-symmetric SC X has both a comple-
ment class XC and an inverted complement class (I-complement) I(XC) so that XC #
I(XC). Usually the complement class of an A-type class is a B-type class, but in 14
complement pairs both SCs are of either A-type or B-type. Thus, for example, the
complement class of 5-11A is 7-11A, that of 5-11B 7-11B.

TABLE 5.7: RECREL values indicating the highest, lowest and average degrees of similarity among
pairs of complement classes. The eight columns list (1) the comparison groups #n/#(12-n) containing
the complement pairs and, as the lowest entry, the cardinality-class range #2-#10, (2) the numbers of
complement pairs in the comparison groups in column 1, (3) the most similar complement pairs in
the comparison groups, (4) the values belonging to the pairs in column 3, (5) the most dissimilar
complement pairs in the comparison groups, (6) the values belonging to the pairs in column 5, (7) the
average values of all complement pairs in the comparison groups, (8) the percentages of all SC pairs
in the corresponding comparison groups with values equal to or lower than the values in column 7.
Excluded from the table are the self-complementing hexad classes, producing trivially value 0, and
the complement pairs {12-1,0-1} and {11-1,1-1}, which do not have RECREL values.

C.Group # Most Simil. Value Most Dissimil. Value Avg. Pctl.

#2/#10 6 {2-5,10-5} 80 {2-6,10-6} 89 82 83
#3/#9 19 {3-11B,9-11A} 44 {3-12,9-12} 75 51 50
#4/48 43 {4-z29B,8-729A} 33 {4-28,8-28} 57 37 28

#5/#7 66 {5-21B,7-21A} 24 {5-28B,7-28B} 33 29 8
#6/#6 36 {6-738,6-76} 13 {6-246B,6-7224A} 27 22 10
#2-#10 170 {6-Z38,6-76} 13 {2-6,10-6} 89 34 -
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Two categories of complement pairs do not contribute to Table 5.7. First, the self-
complementing hexachord classes, producing trivially the value 0 with themselves;
second, the pairs {12-1,0-1} and {11-1,1-1}, which do not have RECREL values at all.

Among 170 complement pairs the values are between 13 and 89, the average
being 34. Columns 3 and 4 show, predictably, that the very lowest complement
value belongs to a hexad class pair. When the differences between the cardinalities
are large, even the minima are high.

The complement pair averages in column 7, belonging to the five value
groups #n/#(12-n), are all below the corresponding averages in Table 5.3. So are the
#5/#7 and #6/#6 maxima in column 6. The #4/#8, #3/#9 and #2/#10 maxima, in
contrast, are above the Table 5.3 averages, the first two even considerably. The dis-
tances between the lowest and highest values vary from 9 (in value groups #2/#10
and #5/#7) to 31 (in value group #3/#9).

The percentiles (column 8) fluctuate strongly. For example a pair with the av-
erage #5/#7 complement pair value, 29, belongs to 8% of closest pairs in the entire
comparison group, whereas the #3/#9 value, 51, is exactly the median. The trans -
positionally symmetric SCs are again represented among the most dissimilar pairs
(column 5).

In section 5.4 above, we examined how many values below the
RECREL(Z1,Z2) value each pair of Z-related SCs {Z1,Z2} had in their two individual
value groups Z1/#2-#12 and Z3/#2-#12. Here, since the differences between the
cardinalities of complement classes {X,XC} vary, pairs with large differences tend to
have high values and, possibly, individual value groups X/#2-#12 and XC /#2-#12
with a large number of values below RECREL(X,X(). To remove the distortion this
tendency might cause in the results, we limit the individual value groups. If X is of
cardinality n and XC of cardinality (12-n), the two individual value groups to be
studied will be X/#(12-n) and X C/#n, respectively.

Thus, for example, given the complement pair {3-1,9-1}, we observe the
RECREL value, 59, and count how many values below it we have in the two value
groups 3-1/#9 and 9-1/#3. The results show whether the complement-related SCs
are each other's closest RECREL counterparts in each other's cardinality-classes, a
reasonably uniform test for all complement pairs.

Given in turn each pair of complement classes {X,XC}, X # XC, and the two
individual RECREL value groups X/#(12-n) and XC /#n where n and (12-n) are the
cardinalities of X and XC, respectively, the average number of values below the
RECREL(X,X () value in each of the two value groups is six.

There are 74 SCs for which the lowest RECREL counterpart in the cardinality-
class of the complement is the complement itself. 74 is only 21% of all SCs between
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cardinalities 2 and 10. At the other extreme, in the individual RECREL value group
8-28/#4, the number of values below the RECREL(8-28,4-28) value, 57, is 36. As the
total number of tetrad classes is 43, more than 80% of them are more similar to 8-28
than its complement is. Furthermore, in the individual value group 9-12/#3, the
number of values below the RECREL(9-12,3-12) value, 75, is 17. Astonishingly, along
with 3-10, 3-12 is the most dissimilar triad class counterpart for 9-12.

From the point of view of the smaller SCs the situation is quite different. In
the value groups 4-28/#8 and 3-12/#9, the values with the complement classes are
the lowest ones. This sort of dramatic asymmetry in the results is connected to sub-
set-class instance distribution. SCs of small cardinalities with highly uneven instance
distributions, such as 3-12 and 4-28, produce high RECREL values with all SCs of
large cardinalities, as the latter ones tend to have even dyad and tetrad class in-
stance distributions. In contrast, SCs of small cardinalities which have the most even
instance distributions possible, produce with their complements values that are
usually at least reasonably close to the lowest ones in the value groups XC/#n. For
example RECREL(3-11B,9-11A) = 44. This is the lowest value in the two value
groups 3-11B/#9 and 9-11A/#3. There are cases, however, where the asymmetry
between the two sets of values below the {X,XC} value is of the reversed kind. For
example RECREL(5-Z38A,7-Z38B) = 32. The value group 5-Z38A/#7 contains 28
values below 32. In the value group 7-Z38B/#5, in contrast, the number of values
below 32 is only 9.

Let us also briefly investigate RECREL values between SCs and their inverted
complements. There are three types of I-complement pairs not contributing to the
table. See Table 5.8 legend. The interesting aspect about the 158 I-complement pairs
is revealed by comparing tables 5.7 and 5.8.6 Entries in the latter table are either
similar or lower than their counterparts in the former. Generally, the I-complement
pairs represent slightly closer RECREL similarity than the complement pairs. We
have no explanation for this observation.

According to RECREL, complement pairs represent anything but a consistent
degree of similarity. This observation has interesting implications, as well-known
theoretical concepts and analytical principles emphasize the importance of the com-
plement relation. Forte, deeming the complement of a SC a "reduced or enlarged
replica" of that SC (1973a:78), gives the complement relation an important role in his
set-complexes (Ibid., 93-7), and suggests that if a SC is to be structurally significant
in an atonal piece of Schénberg, also its complement should occur throughout the
piece (Forte 1972:45 and 1982:132-5).

6 Note that the set of all complement pairs and the set of all I-complement pairs intersect. Given an
inversionally symmetric SC S, Sc = I(5¢).
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TABLE 5.8: RECREL values indicating the highest, lowest and average degrees of similarity among
pairs of inverted complement classes. The eight columns list (1) the comparison groups #n/#(12-n)
containing the inverted complement pairs and, as the lowest entry, the cardinality-class range #2-#10,
(2) the numbers of inverted complement pairs in the comparison groups in column 1, (3) the most
similar inverted complement pairs in the comparison groups, (4) the values belonging to the pairs in
column 3, (5) the most dissimilar inverted complement pairs in the comparison groups, (6) the values
belonging to the pairs in column 5, (7) the average values of all inverted complement pairs in the
comparison groups, (8) the percentages of all SC pairs in the corresponding comparison groups with
values equal to or lower than the values in column 7. Three types of case do not contribute to the
table: (a) the self-complementing, inversionally symmetric hexad classes (being their own inverted
complements), (b) inversionally non-symmetric hexad classes whose complements are their inver-
sionally related classes, (also their own inverted complements), (c) the complement pairs {12-1,0-1}
and {11-1,1-1}, not having RECREL values.

C.Group # Most Simil. Value Most Dissimil. Value Avg. Pctl.

#2/#10 6 {2-5,10-5} 80 {2-6,10-6} 89 82 83
#3/#9 19 ({3-11B,9-11B} 44 {3-12,9-12} 75 51 50
#4/4#8 43 {4-Z29B,8-Z29B} 30 {4-28,8-28} 57 36 20

#5/4#7 66 {5-23B,7-23B} 24 ({5-Z12,7-212} 32 26 3
#6/#6 24 {6-14B,6-14A} 8 {6-7248,6-726} 24 20 4
#2-#10 158 {6-14B,6-14A} 8 {2-6,10-6} 89 33 -

5.6 RECREL VALUES BETWEEN SCS OF CARDINALITY N AND THEIR
SUBSET-CLASSES OF CARDINALITY N-1

RECREL, being based on the extent of mutual embedding of subset-classes in two
SCs, is closely connected to the inclusion relation. Given two SCs X and Y of cardi-
nalities n and m so that Y is included in X, we may then ask, is the fact that every
subset-class in Y is also a subset-class in X reflected in the value RECREL(X,Y), when
compared to all values in the value group #n/#m? Or, generally, do inclusion-re -
lated pairs have lower than average RECREL values within their value groups? In
terms of differences between cardinalities, there are a number of "difference cate-
gories" we can study among the comparison groups: #n/#n-1, #n/#n-2, etc. As ex -
amining all inclusion relations is beyond our present scope, and as the inclusion re-
lation becomes extremely common when the cardinality difference is sufficiently
great - all dyad classes are subset-classes of all classes of cardinality 7 or higher, for
example - we will concentrate on just one "difference category,” the comparison
groups #n/#n-1 and the inclusion-related SC pairs within them.

By the term n-1 classes let us refer to all SCs representing a cardinality one less
than the cardinality n of some referential class. Accordingly, we will speak of n-1
subset-classes, n-1 subset class averages (average RECREL values between SCs of cardi-
nality n and their subset-classes of cardinality n-1), non-included n-1 classes, etc. The
triad classes are the SCs of smallest n whose n-1 classes we will examine. The upper
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limit for n is 10, as there is only one SC in each of the cardinality-classes 11 and 12.

The n-1 subset-class information is given in Table 5.9. The first observation
we make is the same we already made in connection with the inversionally related
and Z-related pairs and the complement pairs: the degree of similarity is not uni-
form within one value group. Some SCs of cardinality n can be considerably more
similar to their n-1 subset-classes than some others.

In a few cases SCs are maximally similar to their n-1 subset-classes. For ex-
ample the sole n-1 subset-class of SC 6-35 is 5-33. RECREL(6-35,5-33) = 0. SC 4-9 con-
tains two instances of 3-5A and two of 3-5B. RECREL(4-9,3-5A) = RECREL(4-9,3-5B)
= 0. Out of the fifteen SC pairs with RECREL value 0, eight are inclusion-related and
belong to one of the comparison groups #n/#n-1. (Section 5.2).

TABLE 5.9: RECREL values indicating the highest, lowest and average degrees of similarity between
SCs of cardinality n and their subset-classes of cardinality n-1. The nine columns list (1) the compari-
son groups #n/#n-1 containing the pairs and, as the lowest entry, the cardinality-class range #3-#10,
(2) the numbers of SCs in the cardinality-classes n in column 1, (3) the SCs of cardinality n having the
lowest average values with their subset-classes of cardinality n-1, (4) the average values belonging to
the SCs in column 3, (5) the SCs of cardinality n having the highest average values with their subset-
classes of cardinality n-1, (6) the average values belonging to the SCs in column 5, (7) the averages of
average values between each SC X of cardinality n and all SCs of cardinality n-1 included in X, (8) the
percentages of all SC pairs in the corresponding comparison groups with values equal to or lower
than the values in column 7, (9) the averages of average values between each SC X of cardinality n
and all SCs of cardinality n-1 not included in X.

C.Group # Most Sim. _Val Most Dissim. Val Avg. Pctl. Avg.Non-Inc.
#10/#9 6 10-6 13 10-4 15 14 33 19
#9/#8 19 9-12 11 9-8B 20 18 13 25
#8/#7 43 8-28 6 8-Z29B 23 20 6 29
#7/#6 66 7-31B 15 7-28B 26 23 6 35
#6/#5 80 6-35 0 6-Z45 31 24 4 40
#5/#4 66 5-33 12 5-7Z36B 39 29 8 48
#4/#3 43 4-28 0 4-729B 50 34 9 62
#3/#2 19 3-12 0 3-11B 67 59 4 100
#3-#10 342 6-35 0 3-11B 67 27 - 44

The distances between the lowest values (column 4) and the highest values (column
6) vary from a very narrow 2 (value group #10/#9) to an extremely broad 67 (value
group #3/#2). All SCs in column 3 are either transpositionally symmetric or multi -
ple-instance subset-classes of such: 7-31B of 8-28, 5-33 of 6-35. The SCs in column 5,
by contrast, are classes with more even subset-class distributions. The averages
(column 7), despite reaching as high a value as 59, are lower than their counterparts
in the #n/#n-1 cells in Table 5.3, and often considerably so. The percentiles (column
8) show that in some comparison groups, the pairs with average n-1 subset-class
values or lower belong to quite small groups of most similar pairs.

Comparisons between corresponding entries in columns 7 and 9 give an ad-
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ditional viewpoint. The average inclusion-related #n/#n-1 pair has a clearly lower
value than the average #n/#n-1 pair without the inclusion relation. Not even the
column 6 maxima reach their column 9 counterparts.

There are 342 SCs between the cardinalities 3 and 10. Out of these, 311 are
such that all their closest n-1 RECREL counterparts are also their subset-classes. In
28 cases the lowest n-1 value is shared by a subset-class and a non-included class.
There are only three cases where non-included n-1 classes are the closest n-1 coun-
terparts alone. These three SCs, 5-217, 5-22 and 5-Z37, produce the value 28 with
their closest included tetrad classes. Each produce a slightly lower value, 27, with
two non-included tetrad classes. In the case of 5-Z17, for example, these classes are
4-7 and 4-17.

5.7 RECREL VALUES BETWEEN M-RELATED SCS

When the M operation and /or M-related SCs are being discussed from the point of
view of our present interests, aspects of abstract structural similarity seem to prevail
over those of intuitively experienced resemblance.” For example, writers point to
predictable regularities in the ic contents of M-related SCs, or note that M, M1, M7
and M11 are the only operators on 12 pcs that are isomorphisms in the group-theo-
retical sense (Morris 1987:79-80, Rahn 1980:53-5). Doubts are even expressed about
the possibility of deriving aurally similar pitch combinations from at least some M-
related SCs (Morris 1987:79).

Under Tp-classification, the M-counterpart of a given SC X can be X itself, its
inversionally related SC I(X), or some other SC Y. The pairs M(X) = X are excluded
from the calculations below. In the following, when we refer to the M-related pairs,
we mean the 134 SC pairs where M(X) # X.

The information in Table 5.10 shows that from the point of view of RECREL,
the degrees of similarity among M-pairs in a single comparison group #n/#n can
fluctuate significantly. In groups with more than one M-pair (all except #10/#10 and
#2 /#2), the distances between the lowest values (column 4) and the highest values
(column 6) vary from 11 (#9/#9) to as high as 67 (#3/#3). The SCs in the most simi -
lar pairs (column 3) are often inversionally related to each other. The averages
(column 7) are below their RECREL value group Table 5.3 counterparts, but in the

7 Following the terminological convention used in Morris (1987), by M we mean only what is in some
sources identified as Ms. SC pairs related by other multiplication operations, such as My and M11,
will not be examined in this section. For a description of the concept and related discussion, see for
example Rahn (1980:53-6) and Morris (1987:65-6).
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cases of the comparison groups #n/#n, 3 < n <9, the column 6 maxima can even be
considerably higher than the averages in Table 5.3. Notably, all of the most dissimi-
lar pairs (column 5) belong to the most often discussed category of M-related pairs,
as each contains a "chromatic segment” and a "circle of fourths segment” of the same
length.

TABLE 5.10: RECREL values indicating the highest, lowest and average degrees of similarity among
pairs of M-related SCs. The SCs which are their own M-counterparts do not contribute to the table.
The eight columns list (1) the comparison groups #n/#n containing the M-related SC pairs and, as
the lowest entry, the cardinality-class range #2-#10, (2) the numbers of M-related SC pairs in the
comparison groups in column 1, (3) the most similar M-related pairs in the comparison groups, (4)
the values belonging to the pairs in column 3, (5) the most dissimilar M-related pairs in the compari-
son groups, (6) the values belonging to the pairs in column 5, (7) the average values of all M-related
SC pairs in the comparison groups, (8) the percentages of all SC pairs in the corresponding compari-
son groups with values equal to or lower than the values in column 7.

C.Group # Most Simjil. Value Most Digsimil. Value Avg. Pctl.

#10/#10 1 {10-1,10-5} 9 {10-1,10-5} 9 9 7
#9/4#9 7 {9-8A,9-8B} 8 {9-1,9-9} 19 13 13
#8/#8 15 {8-7,8-20} 13 {8-1,8-23} 27 18 21
#7/#7 28 {7-7A,7-7B} 9 ({7-1,7-35} 37 20 10
#6/4#6 32 {6-213,6-250} 13 ({6-1,6-32} 41 22 10
#5/#5 28 {5-7A,5-7B} 7 {5-1,5-35} 53 25 10
#4/#4 15 {4-18A,4-18B} 14 {4-1,4-23} 54 30 21
#3/#3 7 {3-8A,3-8B} 0 {3-1,3-9} 67 28 4
#2/#2 1 {2-1,2-5} 100 {2-1,2-5} 100 100 100
#2-#10 134 {3-8A,3-8B} 0 {2-1,2-5} 100 23 -

Given in its turn each M-related SC pair {M1,M2}, M1 # M2, and the two individual
RECREL value groups M1/#2-#12 and M2 /#2-#12, the average number of values
below the RECREL(M1,M2) value in each of the two value groups is 27. In every
case, if M1 /#2-#12 contains n values below the RECREL(M 1,M2) value, also M2 /#2-
#12 will contain n values below the RECREL(M2,M1) value.

There are 32 pairs of M-related SCs such that the classes are each other's clos-
est RECREL counterparts. At the other extreme is for example the pair {5-1,5-35}.
Each of the value groups 5-1/#2-#12 and 5-35/#2-#12 contains 274 values below the
RECREL(5-1,5-35) value, 53. ‘

58 SUMMARY
The existence of a given relation between a pair of SCs establishes a distinct type of

similarity between them. This type of similarity may correlate closely with the one
whose existence we can demonstrate with a similarity measure. A general tendency



RECREL Values 143

does not guarantee that the correlation exists in every individual case, however. At
times the correlation may be far from evident, and in some cases it may fluctuate be-
tween strong and weak.

In other words, it seems that different aspects of SC similarity can sometimes
exist in unison and sometimes conflict with one another. Due to the dynamic nature
of musical materials, structures and processes, no universally applicable hierarchy
can exist between these aspects. The validity of one can be neither guaranteed nor
denied by another.



B CHAPTER 6
RECREL AS AN ANALYTICAL TOOL
ASPECTS OF ARNOLD SCHONBERG'S OPUS 11, NUMBER 1.

6.1 INTRODUCTION

The purpose of this chapter is to examine the RECREL similarity measure as an
analytical tool. The work to be investigated is the first of the Three Piano Pieces,
Opus 11, (1909), by Arnold Schénberg.

In section 6.2 we will first discuss a number of aspects relevant to pcset-
theoretical analysis of atonal music in general, and the present analysis in par-
ticular. Among these are segmentation, the use of a similarity measure in analy-
sis, analytical methods and objectives, identification of the specific SC materials
to be examined, degrees of SC similarity which can be considered "analytically in-
teresting,” etc.

The analysis itself is carried out in three parts. In each part, we will select a
distinct viewpoint on the SC structure of Op. 11, No. 1, and examine how it can
be described with the help of RECREL. In the first part, in section 6.3, we study
the RECREL characteristics of the SC materials found to be structurally important
in two earlier analyses. We also see whether RECREL supports the conclusions
of these analyses.

In the second part, in section 6.4, we analyse what we will call palindromic
SC successions, or palindromes for short. We propose that the music contains a
number of successions of SCs designed so that the succession is the same from
beginning to end and end to beginning. The lengths of these palindromes vary
from rather short to relatively long. The textural appearances of the counterpart

144
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segments (having the same SC identity and the same distance from the axis or
center point) vary from practically identical to highly different, depending on the
case and the positions they have within the palindrome.

In the third part, in section 6.5, we devise a type of SC complex or family,
to be called a RECREL region, and investigate aspects of the SC structure with the
help of such region. In constructing a region, a reference SC, which we will call a
nexus SC after the terminology in Forte (1973a:101), is selected and a RECREL
value representing the highest acceptable degree of dissimilarity determined. To
qualify as a member of a given region, a SC has to have a RECREL value with the
nexus which is below or at the limit. We believe that the type of harmonic struc-
turing that can be identified and described with the help of the RECREL region
concept is an intentional element of the music. There is even a passage contain-
ing an interplay between two simultaneous regions.

Besides observing these compositional approaches, we shall also observe
combinations of them. A palindromic SC succession may coincide with material
described with a RECREL region, for example, resulting in a multi-layered pas-
sage which processes several independent elements simultaneously. These ob-
servations are in agreement with aspects of harmonic, textural and motivic

richness analysts have shown in atonal Schénberg.1

6.2 ANALYTICAL PRELIMINARIES

Isaacson summarizes the various aspects relevant to a pcset-theoretical analysis
of atonal music. Segmentation is vitally important, since the grouping of pitches
in the music is the foundation on which an analysis rests. In spite of many at-
tempts to define a segmentation methodology, however, no general agreement
has been found. Even rigorously formal approaches can end up following ad hoc
guidelines based on musical intuition. Many aspects have an effect on segmenta-
tional decisions, both alone or in combination: rests, instrumentation, phrase
markings, articulation, dynamics, attack and release points, texture, register, and
rhythm. Yet segmentation based on careful observation of surface features may
not be sufficient on its own. Concealed SCs, as well as interconnections between
them, can be of great structural significance in a piece of music. When using a
similarity measure and identifying potential patterns of SC similarity within a

1 gee, for example, Forte (1972) and Christensen (1987). Even Schénberg's extra-musical activities
bear wittness to his tendency to multidimensional thinking: he devised a game of three-dimen-
sional chess.
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piece, a number of alternatives present themselves: Are the SC materials of a
given piece homogeneous as a whole, or do they contain contrasting elements?;
Within a section of music, can a pattern of similarity be described in terms of
segment-to-segment similarity between consecutive segments, or in terms of
similarity to some nexus SC?; If such a pattern is identified, does it recur else-
where in the music?; What is the relation between horizontal and vertical di-
mensions?; etc. (after Isaacson 1992:194-201).

When using a similarity measure in analysis, help in the form of previ-
ously accumulated experience is not at hand. A well-established corpus of large-
scale analyses using the measures does not exist. As Isaacson points out in
(1992:193), when discussing their measures, theorists offer either small-scale ana-
lytical examples, or none at all.

Profiling the present analysis of Opus 11, Number 1 was reasonably
straightforward, however, for two reasons. Firstly, the basic features suggested
themselves already during initial exploration of the music and became the cen-
tral elements of the analysis, guiding further segmentation. Secondly, part of the
task consisted of examining results demonstrated by others. The starting point
was that the main conclusions in Wittlich (1974) and Forte (1982), stating that
relatively limited groups of SCs constitute the structural basis of the music, are
valid.

As the topics to be discussed are very different from each other, it is not
meaningful to try to define a distinct set of notions constituting our analytical
method. Simply, we identified patterns of harmonic processing - some with the
help of RECREL, some without - and became convinced of their importance in
the music. Our analytical objectives, then, are to describe these patterns and as-
sess how RECREL can help us in doing this.

The diversity of our topics is particularly obvious with respect to segmen-
tation. In this sense the palindromic SC successions and RECREL regions are
each other's exact opposites. In order to be credible, a SC palindrome must be un-
ambiguously segmented, each SC in the succession matching its counterpart at
the other side of the center point. A RECREL region, by contrast, manifests its
presence in a large number of segments, both obvious and veiled, constituting
the nexus SC or classes similar to it. Because of these differences, we will not de-
fine any general segmentational guidelines. Whenever necessary, segmentation
will be discussed in the context of the current viewpoint.

Opus 11, Number 1, dubbed Schénberg's "first atonal masterwork" by
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Forte in (1982), is discussed in a wide range of texts.2 The present analysis does
not attempt to be a comprehensive analysis of the music, not even with respect
to pitch organization. We will concentrate on the SC structure, especially on SCs
of cardinalities 4, 5, 6 and 7. We believe that SCs of these cardinalities are struc-
turally the most important in this piece.

6.2.1 Determining a "Low" Value

When an analysis is prepared with the help of a similarity measure, and espe-
cially with the help of concepts like RECREL regions using user-definable value
limits, an important question inevitably emerges: What sort of values are "low”
in terms of being analytically significant in a given context? Obviously, a univer-
sal value limit below which everything would be "similar" and above "dissimi-
lar" does not exist. Analytical situations, as well as opinions describing those sit-
uations, vary strongly. A value limit should be thought of only as an approxi-
mate "rule of thumb" -type of concept.

In the analysis below, value limits of the RECREL regions lie between 20
and 25. A limit will not be applied rigorously. Pairs of segments with even con-
siderably higher values will be discussed if their relation is considered impor-
tant. Two notions led us to identify the value range 20-25 as suitable for our pur-
poses. The first one was the analysis of the RECREL values that belong to pairs of
inversionally related and Z-related SCs, pairs of inclusion-related SCs of cardi-
nalities n and n-1, as well as to pairs enjoying other relations often associated
with close similarity. The second notion consisted of aural assessments of chord
pairs derived from SCs with different RECREL values.

The first notion is obvious. If we have a relation giving rise to associations
of similarity, or in some cases even considerations of equivalence, the RECREL
values of the pairs enjoying the relation might reflect this special closeness by be-
ing "low."3 We saw in chapter 5 that the values between inversionally related
classes vary from 0 to 25. The average is 14. Among Z-related pairs the corre-
sponding figures are 8, 27 and 20, among non-self-complementing 6-pc comple-
ment pairs 13, 27 and 22. The average value between a SC of cardinality n and its
subset-classes of cardinality n-1 is 27, and so on. On the basis of these figures the

2Fora survey of some of these, see for example Brinkmann (1969:40-57) and Forte (1982:129-30).

3 As was already noted in chapter 5, however, we cannot draw straight parallels between RECREL
similarity and, for example, inversional similarity. The results are only indicative.
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lower end of our suggested limit range, 20, seems in fact somewhat restrictive.4

During the aural assessments, chord pairs with certain similar characteris-
tics were derived from SC pairs having values from 0 to 100. In our experience
there was a correlation between a low RECREL value and chordal similarity.
Chords derived from SC pairs with RECREL values approximately up to 20
seemed to cause an impression of similarity, whereas chords from SC pairs with
high values did not. This is a purely subjective assessment and is not offered as
proof of the validity of the value limit. No controlled listener group tests were
conducted to seek confirmation of this observation.5

6.3 RECREL AND SC MATERIALS IN TWO EARLIER ANALYSES

Both Wittlich (1974) and Forte (1982) suggest that the harmonic organization of
Op. 11, No. 1 is based on a relatively small collection of SCs. In Wittlich (1974:43)
the collection is called the Most Prominent Sets, in Forte (1982:132-5) The
Harmonic Vocabulary (henceforth just Vocabulary). The two collections differ
somewhat, but have also a number of common members. Most Prominent Sets
contains 3-, 4- and 6-pc classes, with 5-pc formations being treated as subset-
classes of the 6-pc classes. The Vocabulary, for its part, contains SCs of cardinali-
ties from 4 to 8. Each member also has its complement class present in the collec-
tion.6

According to the two studies, not only are many clearly profiled melodic
and chordal formations in the music derived from members of the collections,

4 Frequencies of values up to 20 offer an additional viewpoint. In the value group #4/#4, these val-
ues constitute the lowest 2% of values. In the value group #5/#5, the corresponding figure is 4; In
#6/4#6, also 4; In #7 /#7, 10; In #8/#8, 33. Values below a given limit will be more frequent when seg-
ments constituting large SCs prevail, an aspect to be taken into consideration when the limit is de-
termined.

5 To derive chords from some SC X, all permutations were first made from its prime form. The re-
sulting group of ordered pcsets was interpreted as a group of chords so that in each pcset, the order
of the pcs from left to right became the order from bottom to top, and the distance between consecu-
tive pitches did not exceed a major seventh. The chords were placed in middle register. Given two
groups of chords derived from SCs X and Y, a referential X-chord was determined and a Y-chord se-
lected which best fulfilled the following conditions: (1) its width had to be equal to that of the X-
chord, (2) the number of pitches it had in common with the X-chord had to be equal to the largest
number of pcs in common between any two member sets of X and Y, (3) the distance between non-com-
mon pitches was to be as small as possible. If conditions 1 or 2 could not be met, the X-chord was
changed. Transposition was allowed.

6 The Vocabulary set-classes, each with its complement, are as follows: 6-Z3/6-Z36, 6-Z10/6-Z39,
6-Z13/6-Z42, 6-16, 6-Z19/6-Z44, 6-21, 5-13/7-13, 5-Z17/7-Z17, 5-Z18/7-Z18, 5-21/7-21, 5-Z37/
7-Z37, 5-Z38/7-Z38, 4-7/8-7, 4-19/8-19. We will examine the classes under Tp-classification, in-
creasing their number to 44.
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but instances of the SCs are constituted also from a wide range of other pitch
combinations. Fragments of simultaneous, overlapping or successive principal
instances together produce more ambiguous secondary ones, resulting in an ex-
traordinarily skilful fabric of basic materials, a sort of musical cross-word puzzle.
Or, in the words used by Forte (1982), a magical kaleidoscope.

Wittlich relates SCs in the Most Prominent Sets by comparing subset-class
relations and ICVs. Also verbal assessments are given, for example deeming a SC
pair "totally dissimilar.” (1974:44-5). Usually the focus is on aspects other than SC
similarity, such as pitch relations. Forte discusses SC similarity more often, but
does not analyse the Vocabulary with his own similarity relations. It becomes
obvious, however, that he sees it as containing a very wide spectrum of har-
monic resources. He states, for example, that the composer selected hexad classes
of "considerable diversity as well as similarity with respect to interval-class con-
tent," and that this aspect has an effect on the sonic richness of the work
(1982:135).7

Analysis of these SC collections with RECREL strongly supports the notion
of harmonic diversity. Let us first make observations at an abstract level, mo-
mentarily disregarding the way the classes are actually used in the music. As the
collection given by Forte is larger of the two, we will use it as our point of refer-
ence. Concerning the relation between the Vocabulary and RECREL, the most
important result is this: almost all Vocabulary classes produce very low values
with at least a few others. In principle, a succession of Vocabulary class state-
ments could be formulated so that each statement is preceded, paralleled and fol-
lowed by statements highly similar to it. On the other hand, there are no
Vocabulary classes having only low or even moderately low values with the rest
of the SCs. The possibility of using contrasting Vocabulary material arrange-
ments is also retained.

The average RECREL value of all pairwise Vocabulary class comparisons is
31. On average, the lowest value obtained when a Vocabulary class is compared
with all other Vocabulary classes is 14. The corresponding highest value is 45.
The lowest value from an individual comparison is 4, belonging to the pair
{5-21A,5-21B}. The highest value, 52, belongs to a few pairs, {4-19A,6-Z42} among
them. Interestingly, for some set-classes the lowest values are about the same as
our RECREL region value limits. The lowest values 6-Z13 and 6-Z42 produce
with other Vocabulary classes is 22. 6-16A and 6-16B have almost as high

7 Teitelbaum offers a related observation in (1965:106-8). When certain works of Schénberg and
Webern were analysed and compared, the harmonic materials used by the former were found out to
be clearly more diverse than those used by the latter.
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minimums, 20. 6-21A and 6-21B, in turn, have very few low values. The lowest
is RECREL(6-21A,6-21B) = 14. The next lowest value they produce is 25, 6-21A
with 5-13B and 7-13B, 6-21B with the inversional classes of the latter two. The
rest of the values are 29 or above.

According to Forte, the way the composer uses the Vocabulary in the mu-
sic does not aim at harmonic unity, rather the opposite, "kaleidoscopic" ar-
rangements bringing out the different dimensions of the SC materials in a mul-
titude of prismatic reflections. He states: "the harmonic structure of the music is
constantly in flux, constantly shifting, to reveal new facets of the interlocking of
its components." (1982:140). RECREL supports this conclusion as well. The man-
ner with which the Vocabulary classes are usually arranged in the music does
not produce a pattern of consistently low RECREL values - or consistently high
ones, for that matter. Values between juxtaposed classes routinely vary from low
ones (15 or less) to quite high ones (40 or more). A succession of few low values
may be found, only to be interrupted by a sudden leap to much higher ones.
However, even if harmonic diversity were the rule in arranging the Vocabulary
materials, there are still exceptions. In some passages, such as in the closing mea-
sures, classes similar to each other are dominant to the extent one must assume
a Vocabulary class arrangement intentionally aimed at a uniform harmonic pro-
file.8

In the following we shall take an example of both types of Vocabulary class
arrangements. The first one describes the norm, a kaleidoscopic SC arrangement,
as it appears in the opening music. (Section 6.3.1). The closing measures exem-
plify the exception, an arrangement with uniform harmonic characteristics.
(Section 6.3.2). Many segmentations will be adopted from Forte (1982) and
Wittlich (1974), with additional segmentations of our own.?

8 The notion of an arrangement like this is based on assessing the Vocabulary profile of a given pas-
sage as a whole, with "rule of majority" as the main criterion. It is not required that each and ev-
ery Vocabulary class instance must be of uniform characteristrics since it is evident, for example,
that many similar instances can have one dissimilar in their midst, or that classes of both small
and large cardinalities will be present, together producing high RECREL values.

9 The examples will use diagrammatic notation similar to the one in Forte (1982). Some examples
are placed sideways. Numbers between the arrows pointing to the SC names are RECREL values.
We will mainly concentrate on RECREL values between adjacent, overlapping and simultaneous
segments, but some additional RECREL values may be given below the SC names. These belong to
pairs of segments having one or more other segments between them.
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6.3.1 The Opening: Measures 1-11

The opening music, mm. 1-11, can be seen in Ex. 6.1. The segmentation is shown
in two separate examples, 6.1.a and 6.1.b. The former contains principal seg-
ments, the latter more ambiguohs ones. Part of this passage, from m. 7 onwards,
will be discussed also in connection with a palindromic SC succession. (Section
6.4.4).

EXAMPLE 6.1: Mm. 1-11.
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The average RECREL value in Ex. 6.1.a is approximately 30. Most values
are between 25 and 31. Here, as well as in Ex. 6.1.b, the highest values belong to
SC pairs containing either 6-21A or 6-21B. These inversionally related classes
were found above to be close only to each other and rather distant from most of
the other Vocabulary classes. This is evident in Ex. 6.1.b. The first value, 14, be-
longs to the pair {6-21A,6-21B} itself, the following two values, both 41, to the
pair {6-21B,6-Z44A}. The average value is approximately 32.
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6.3.2 The Conclusion: End of m. 58 - m. 64

According to Forte (1982:167), multiple forms of SC 6-Z3 pervade the Coda. In
our analysis the two inversionally related Vocabulary classes 6-Z3A and 6-Z3B
are the components producing the dominant harmonic element of the passage,
7-1. For every member set in 6-Z3A there is a member set in 6-Z3B so that the
union of the two constitutes a pcset belonging to this inversionally symmetric
“chromatic” class.19 We believe these "union instances,” covering most of the
conclusion in many different shapes, are intentional. A single instance could be
dismissed as a random formation, but here they occur in a concentration too
dense to be mere coincidence.11

EXAMPLE 6.2: Mm. 58-64.

——

Example 6.2.a gives seven 7-1 instances, located in six measures. They consist of
linear formations, sustained chords combined with simultaneous pitches in the
linear formations, and consecutive attack points. The instance belonging to the

10 71 is not a Vocabulary member itself. As 6-Z3A and 6-Z3B are used as the building blocks of the
dominant SC, the conclusion is not the purest possible example of a Vocabulary class arrangement,
of course. The passage was chosen because it fulfils its purpose well, illustrating an arrangement of
uniform harmonic characteristics.

11 The juxtaposition of inversionally related classes is an aspect occurring throughout the move-
ment. Compare, for example, segments within and between the examples 6.1.a and 6.1.b.
Overlapping segments constitute inversionally related pairs 6-Z39A/6-Z39B, 5-Z38A/5-Z38B,
6-21A /6-21B and 6-Z36A/6-236B. Example 20b in Forte (1982:166) gives additional examples from
the passage under discussion. The pairs are 6-Z10A/6-Z10B and 6-21A/6-21B. The former consti-
tutes 7-Z37, itself a Vocabulary member, the latter 7-8.
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last category, marked with circled pitches, covers half of the passage. Each in-
stance is associated with a pair of pcs, containing the elements to be omitted in
order to obtain the subset-classes constituting 6-Z3A and 6-Z3B, respectively. The
RECREL value between 6-Z3A and 6-Z3B is 14, between 7-1 and 6-Z3A (and
6-Z3B) 17.

The last chord Eb-A-D-G# constitutes an instance of SC 4-9, with the pre-
ceding E an instance of 5-7A. These classes differ completely from their harmonic
surroundings. RECREL(4-9,7-1) = 60, RECREL(5-7A,7-1) = 48. For a discussion of
this striking contrast, see Forte (1982:167), Wittlich (1974:52) and Perle (1981:12).

EXAMPLE 6.2.a: End of m. 58 - m. 64. Instances of SC 7-1. Pairs of pcs above arrows indicate which
elements must be excluded in order to get instances of 6-Z3A and 6-Z3B, respectively

58.  59. 60. 61. 62. 63. 64.
c,Bb  Bb,Ab B,A F&.E F,Eb A,6
3 4 4 A A
e I N
e — N R — c#| H G#
| | | .
I[i5 Bb ac@) I _F#
| oo |
| Demmmmmmmeee- B I D || A
| |
‘ !
! |
| L
|

L (Circled Pitches Only) )
G,F

6.4 PALINDROMIC SC SUCCESSIONS

Palindromic, or more generally, symmetric arrangements of musical objects
(pitch and chord successions, textures, even entire works) are notions relevant to
many 20th century works and theoretical approaches. The status of such an ar-
rangement may be anything from an all-important structural principle to a pass-
ing detail.12

12 gee, for example, Neumeyer (1986:228-38) and Isaacson (1992:211), discussing Hindemith's Ludus
Tonalis and Webern's Op. 5, No.2, respectively. Cherlin (1991) gives an interesting analysis on
palindromes in general and interval palindromes in Schonberg's Moses und Aron in particular, pro-
viding also a list of sources discussing "inversional balances" in Schénberg's music (Ibid., 69-70, 7 3).
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The existence of palindromic arrangements in Op. 11, No. 1, then, is not surpris-
ing as such. There is an element of special interest in them, however, i.e., the ob-
jects being arranged: formations whose pitch contents, registral positions, textu-
ral profiles, etc., may vary, but whose SC identities show a pairwise correspon-
dence around a center of symmetry.13 An argument supporting the intentional-
ity of the palindromic SC successions is obvious: it is highly unlikely that several
such arrangements would be formed accidentally. We believe they indicate how
naturally the composer was thinking in terms of the abstract musical entities we
today call set-classes.

It seems reasonable to assume that the SC palindromes originate in more
obvious palindromic arrangements, with evident textural, pitch-to-pitch or in-
tervallic correspondence. Lessened resemblance between counterpart classes was
then perhaps allowed, as long as their SC identities were maintained.14

The number of palindromic SC successions to be examined below is four.
They are not in the order they appear in the music. The most obvious cases will
be discussed first.

6.4.1 Measures 34-38

The music is shown in Ex. 6.8 in section 6.5.2.2 below. The most obvious element
in the passage is the succession of parallel thirds, forming the upper strand of the
right-hand part. The first six thirds constitute a modified restatement of the
opening theme.

Ex. 6.3 gives the palindromic layer of the music. The succession of thirds is
divided here into four segments, of which the first, third and fourth constitute
instances of 5-21A and the second an instance of its inversionally related class,

13 Palindromic arrangements are not the sole property of the SC structure, of course. An example be-
longing to another domain is the textural palindrome in the opening measures. (Examples 6.1 and
6.1.a) The right-hand 6-Z10A statement in mm. 1-3 has a counterpart in the melodic 6-21A state-
ment in mm. 9-11; The harmonic 6-16A statement, laid out in two trichords in mm. 2-3, corresponds
to the related 6-Z36A combination in mm. 10-11, etc. See Wittlich (1974:45), Perle (1977:162-3) and
Forte (1982:142). Note also the observation in Wittlich (1974:52) on the symmetric arrangement of
certain instances of SCs in Most Prominent Sets. The transpositional levels of counterpart segments
correspond, suggesting another aspect of palindromic or symmetric processing.

14 Schénberg's own comments on different aspects of mirror arrangements in music tell of varying
levels of appreciation, and do not suggest what his attitude or approach might have been towards
the idea of palindromic SC successions. In (1975:68-9) he scorns his mirror-canon exercises as "not
music but only gymnastics.” In (Ibid., 220-3), by contrast, he discusses the use of "mirror forms" of a
motif as means of creating thematic cohesion, stating that it does not matter whether or not the
forms are adopted intentionally. They can also be "a subconsciously received gift from the Supreme
Commander.”
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5-21B.15 The regularity of the segments is exceptional. They do not overlap, they
do not exclude any thirds in the succession, and together they cover exactly the
whole passage. Each 5-21 instance is paired with an instance of SC 4-1 in the left-
hand part. 4-1 is not a Vocabulary member but belongs to the Most Prominent
Sets in Wittlich (1974).

EXAMPLE 6.3: Mm. 34-38. A palindromic SC succession.

34. 35. 36. 37. 38.
5-21A 5-218 5-21A 5-21A
2 ¢ 2 ¢ 0
F D Db---mn- Db| [Eb B Bb|[A F F#-——— r#|[c ¢ B
Db Bb A-——-=—-- Allcd ¢ Gb||[F Db D----=-— p ||Eb ab G
E C#& C D Bb B E F F# B C

Ab

7y B S s S G

R N T I
% 4-1

a-1 4-1 4-1

The pair {5-21B,5-21A} immediately around the axis is one of just two cases
where palindromic counterparts are not instances of the same class, but of inver-
sionally related classes. The other case consists of classes 4-19A/4-19B in the mm.
7-24 palindrome. (Section 6.4.4). In all other cases the counterpart classes repre-
sent the same transpositional SC. Interestingly, the pairs in both cases have ex-
ceptionally low RECREL values, as if to suggest that substituting one with the
other is a minimal deviation from the usual regularity. RECREL(5-21A,5-21B) =
2; RECREL(4-19A,4-19B) = 8. The right-hand and left-hand strands are consistent
internally but highly different from one another. RECREL(4-1,5-21A) =
RECREL(4-1,5-21B) = 68.

Mm. 34-38 will be analysed also in terms of a RECREL region in section
6.5.2.2. For analysis of the Vocabulary materials, see Forte (1982:158-60).

6.4.2 Measures 55-58

The music and segmentation are given in examples 6.4 and 6.4.a, respectively.
The palindrome consists of 11 classes, four of which also contain subset-classes.

15 The multiple instances of 5-21 are mentioned also in Forte (1982:159-60).
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The subset-classes constitute either 4-19A or 4-24.16 The axis class is the instance
of 5-Z17 in m. 57.

EXAMPLE 6.4: Mm. 55-58.

55
/r S—
_ _ _ . T f== >
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= v e S — — el

53. 56. 57. 58.
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F-it-—44--}F-4-—-—+F D E EbiF-+--:FiD E EbiF;|E Eb

Db - DbiFb-- Eb G-+—-$-~-—-- G {EbiGi-mmmm— G! Eb | G

¢ 38 i 31 i 28 i 28 ¢12¢12¢ 28 ¢28¢31¢ 38 ¢
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The counterpart classes are texturally highly similar in the center area, less so in
the outer areas. Low RECREL values between consecutive segments are to be
found, but only among clearly higher ones. With the exception of SC 6-15A and
4-24 all classes are Vocabulary members.

6.4.3 Endof m.27-m. 33.

The number of classes in this palindromic SC succession is eleven, several small
formations being embedded in larger ones. Notably none of the classes are
Vocabulary members. (Ex. 6.5.a). SCs in the axis area again bear clear textural re-

16 The pitch identity of the middle element in the second right-hand chord in m. 55 is in dispute.
Perle (1981:15 n 4) suggests B#, Forte (1982:165 n 18) C#. We adopt the former alternative.
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semblances to one another. The axis class 8-8 and the two instances of 7-6B
around it (mm. 29-30) are almost identical. The outer areas, in contrast, are com-
pletely different.

EXAMPLE 6.5: Mm. 27-33.

28. 29. 30.
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According to the Overview of Form in Forte (1982:131), the succession covers
two distinct passages, "Canonic episode related to 12-16" and "Final statement of
a." Moreover, the three pcs in the first 9-6 instance, D-Db-A, form a link with the
previous passage. Links between successive passages are present also elsewhere
in the music. See, for example, the melodic line constituting an instance of 6-21A
in mm. 16-19 of Ex. 6.6.a. (A horizontal segment drawn with a dashed line).

Two low RECREL values are to be seen, between the axis class 8-8 and the
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7-6B classes around it. RECREL(8-8,7-6B) = 18. The rest of the values are relatively
high.

6.4.4 Measures 7-24

The longest of the palindromic SC successions covers 18 measures, mm. 7-24.
The number of classes is 24. (Ex. 6.6.a). The axis is in m. 13, between the two pairs
of instances of 4-2A. A number of the 5Cs, notably the ones in the outer areas, be-
long to the Vocabulary (6-Z42, 5-Z38A, 6-Z39A, 5-737, 6-21A, 4-19A and 4-19B).
Most classes in the center area, by contrast, do not (3-6, 3-8A, 8-4B, 5-1 and 4-2A).
3-8A and 4-2A, however, belong to the Most Prominent Sets of Wittlich (1974), as
does the complement of 8-4B, 4-4A.

There are two small irregularities in the palindrome. The first one is the
order of the two pairs of trichords, constituting 3-6 and 3-8A. (Mm. 10-11 and 17-
18). In order for the symmetry to be accurate, the order of one or other of the
pairs should be reversed. The other irregularity, between the counterpart classes
4-19A and 4-19B in m. 12 and m.14, respectively, was already being mentioned in
section 6.4.1 above.

The palindrome is significantly independent of the formal structure of the
movement. In terms of the Overview of Form in Forte (1982:131), it begins in the
middle of the b passage in the first A in the Exposition, spans over a' in mm. 9-
11, the "new material episode" in mm. 12-14, transition in mm. 15-16, return of
a' in mm. 17-18 and return of b in 19-24. The degree of textural similarity be-
tween counterpart classes fluctuates strongly. The first and last classes are textu-
rally remote, whereas the two instances of 5-Z37, D-F#-A-A#-B in m. 8 and Eb-G-
Bb-B-C in mm. 20-21, are identical, only a minor ninth apart. The latter segment,
however, is only a part of a long 5-Z37 statement spanning from m. 19 to m. 24.
The corresponding 6-21A statements (mm. 9-11 and 16-19) have highly similar
contours and pitch contents, and the right-hand statements of 4-2A, around the
axis in m. 13, are identical, save for their transpositional levels.

The most intriguing textural differences are to be found between the
largest counterpart classes, the two instances of 8-4B. The first one constitutes the
arpeggiated pattern in m. 12, (from B to C#), the latter one the sustained
F-A-C#-E chord (4-19B) with the twice repeated succession G#-G-F#-D. The
length of the first 8-4B instance is less than three beats, that of the second three

measures.
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EXAMPLE 6.6: Mm. 7-24.
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The RECREL values vary considerably. The lowest ones are again found in the
axis area, between segments having textural similarities as well. The closing
measures of the palindrome, mm. 19-24, contribute to a passage which will be
analysed in terms of a RECREL region. See section 6.5.2.1. For details on the
Vocabulary and the Most Prominent Sets materials, see Forte (1982:139-51), and
Wittlich (1974:45-8).
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6.4.4.1 Some Resemblances between mm. 14-17 and mm. 55-58

It was noted above that SC palindromes are not the only aspects of symmetry in
the movement, as textural, transpositional etc., considerations arise as well.
Resemblances between mm. 14-17 and mm. 55-58 provide an additional view-
point. See examples 6.4 and 6.6.

The chord F-A-C#-E in m. 14 belongs to 4-19B. With the pitch D# immedi-
ately below it constitutes SC 5-13B, with G# (m. 15) 5-21B, with G 5-26B, with F#
5-7Z37 and with D 5-Z17. In mm. 56-57, in turn, the sustained chord G-Gb-Bb-D be-
longs to SC 4-19A. With the pitch F (m. 56, second beat) it constitutes 5-Z37, with
E 5-26A and with Eb 5-21A. If we add to these the instance of 5-13A in the end of
m. 55 and the axis class 5-Z17, we see that mm. 14-17 and mm. 55-57 consist of
two collections of SCs such that each class in one has its inversional counterpart
in the other. (The inversionally symmetric classes being their own counterparts,
of course).17

Also, the two SC collections are placed in textural settings that are them-
selves "inversions" of each other: in mm. 55-58 the sustained chord is above the
melodic movement, in mm. 14-17 it is below. (In the latter case the chord shares
its pc contents with the low left-hand pattern). It is especially interesting that the
inversional counterparts in the two collections are not mirror-inverted chords,
but inversional with respect to class identity.

6.4.5 Conclusions: RECREL and the Palindromic SC Successions

On the basis of the examples above, it seems that SC similarity is not a governing
principle in the palindromic SC successions. RECREL values of successive classes
fluctuate strongly from low to relatively high. The areas around the axes, how-
ever, seem to be an exception. Low values prevail, and the segments are often
considerably similar also texturally. The consistency with which textural similar-
ities occur in the center areas suggests that the palindromic successions were not
meant to be completely concealed.

While one palindrome may exactly cover a distinct passage, another may

17 In the original segmentation of the mm. 55-58 palindrome, given in Ex. 6.4.a, some of the 4- and 5-
pc segments were grouped together to form the two counterpart segments constituting 6-15A. Also
this hexad class has its inversional counterpart in the first palindrome: the F-A-C#-E chord in m.
15, taken with the pitches G# and G above it, constitute 6-15B.
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extend over several passages. In the latter case, the beginning and end of the
palindrome may or may not coincide with changes in texture.

6.5 RECREL REGIONS

The fact that RECREL region membership is limited with an artificially deter-
mined value limit makes the concept more ambiguous than the SC families dis-
cussed in Isaacson (1992:157-91). The RECREL regions are seen here as purely
pragmatic means to filter the examined SC materials. The disqualification of a
certain SC from a region does not necessarily imply that it is analytically unin-
teresting from the point of view of the region.

The RECREL region concept emerged during computerized segmentation
of the pitch material. (Details in section 6.5.1 below). In some passages large
numbers of consecutive, overlapping and/or simultaneous segments constituted
SCs which have low RECREL values with each other. Some of the segments
were texturally obvious entities (chords, phrases, etc.), others just secondary
"clouds" of pitches residing near each other. An important notion was also that
the segments covered the passages completely. After further analysis it became
obvious that the best way to describe this type of cohesion is with a reference
harmony, a nexus SC. It also soon appeared that the type of harmonic processing
to be described with the help of the RECREL regions was an independent layer in
the music. Instances of the Vocabulary classes were present in the music, but ar-
ranged for example so that some of their pitches contribute to one RECREL re-
gion segment, the rest to another. A Vocabulary class can participate in a
RECREL region, of course, but it can also be very distant from the nexus.

Generally, the notion of a complex texture whose different strands com-
bine into different types of harmonic entities has been identified as an element
of central importance in atonal Schonberg.18 The simultaneous Vocabulary,
RECREL region and/or SC palindrome layers exemplify this type of thinking in
Op. 11, No.1.

18 gee Forte (1972). The reader is directed to the especially illuminative example 11 (Ibid., 57). It
shows four simultaneous "chordal streams" embedded in a single texture, resulting from different
segmentations and producing repeated instances of four SCs. The work under discussion is the fourth
movement of the Five Orchestral Pieces, Op. 16.
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6.5.1 The Automated Segmentations: Nexus Selection and
RECREL Region Validity Conditions

Once initial computer searches had suggested that some passages contain har-
monic processing suitable for RECREL region analysis, the entire movement was
searched. Only some passages were eventually found to contain such processing.

The data given to the computer consisted of pitches only. Right-hand and
left-hand parts were examined both separately and together. Simultaneities were
interpreted as successions so that they could be imbricated. Phrasing, rhythm,
dynamics, etc., were ignored.1? To launch a search, a pitch succession represent-
ing a passage was segmented into overlapping segments of several different
lengths. Typically, the shortest segments were of length 3, the longest of length
16.20 Even a short passage produced hundreds of segments, SC identities of
which were determined. After this, every SC between cardinalities 4 and 8 was
set in its turn to be a "nexus candidate." For each candidate, all RECREL values
with the segments were found. Only segments whose values with the candidate
were under the limit (typically between 20 and 25) were retained. Statistics were
compiled for every candidate, by analysing numbers of accepted segments, aver-
age RECREL values and segment distribution within the passage.!

Passages producing unsatisfactory results were rejected from further test-
ing. Their best nexus candidates could perhaps produce low values, but with
segments concentrated in only a part of the passage. The whole material was not
covered consistently enough. In accepted passages, however, low-valued seg-
ments belonging to a given candidate or a few candidates could cover the whole
passage well. Further testing was then done manually, in order to see whether
segments outside the scope of the automatic imbrication would corroborate the
preliminary results.22 Determining the final nexus SC was difficult in a few

19 1t should be evident without saying that such searches were thought of as producing very crude
analytical raw material only.

20 When segmenting the pitch succession into 4-element units, for example, the first segment con-
tained pitches 1-4, the second one pitches 2-5, the third one pitches 3-6, etc.

21 Whether or not the nexus itself should be prominently present in a passage analysed in terms of a
RECREL region is an interesting question. A passage without any instances of the nexus and still
conveying a high degree of RECREL region cohesion is not impossible to envisage. This would sug-
gest a sort of harmonic "center of gravity" outside the SC materials of the passage itself. Analogous
cases with this kind of "ghost material” feature would perhaps be variations without a theme, ex-
amples of which exist.

22 An interesting observation was that the nexus candidates producing best results had often low
RECREL values with each other. They also produced low values with many same segments. Thus,
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cases, due to equally strong candidates. A 6-pc candidate, for example, could have
low values with many evenly distributed 5-pc and 6-pc segments, whereas a 7-pc
candidate could produce equally desirable results with emphasis on 7-pc seg-
ments.

The automated segmentations were used only during the initial stages of
the analysis, and their main purpose was to identify the passages to be exluded
from the RECREL region analysis. Part of these segmentations contribute also to
the final analysis, but are complemented by segments identified by other means.
The analytical conclusions presented below are not dependent upon the me-
chanical analysis.

6.5.2 RECREL Region Passages In Opus 11, Number 1

As mentioned above, the type of harmonic processing which we wish to illus-
trate with the help of the RECREL region concept is not present throughout the
music. The passages where it appears are for the most part associated with the
Development section.

The number of passages to be analysed in terms of RECREL regions is
three. The first one consists of mm. 19 - beginning of 28, its nexus SC being 6-20
{0,1,4,5,8,9}. (Section 6.5.2.1). The second passage, to be examined in section 6.5.2.2,
covers measures 34 - beginning of 38. Again, the nexus SC is 6-20. The third and
most complex passage begins immediately after the second one, covering the
measures 38-48. It will be analysed in terms of two simultaneous RECREL re-
gions, one of horizontal and the other of vertical orientation. The nexi are 6-20
and 8-28, respectively, the prime form of the latter being {0,1,3,4,6,7,9,10}. (Section
6.5.2.3). Together the second and third passages cover most of the Development
section. See Overview of Form in Forte (1982:131).

In the RECREL region examples, each segment is associated with a SC
name followed by a number. The latter is.the RECREL value the segment has
with the nexus SC. In the text below, a number in parentheses after the SC name

serves the same purpose.

the harmonic character of the passage could be identified from different but closely related angles.
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6.52.1 M. 19 - Beginning of m. 28: Nexus SC 6-20

We noted in section 6.5.1 that, in some passages, more than one SC seemed suit-
able to serve as the nexus. The present passage is one of them. Both 6-20 and
7-21A {0,1,2,4,5,8,9} suggested themselves strongly during the nexus search. For
the sake of brevity we will examine the hexad class nexus only. This inversion-
ally and transpositionally symmetric SC is not a Vocabulary class itself, but has
low RECREL values with a number of them.23 It is the nexus, or one of two nexi,
in every passage to be examined in terms of a RECREL region.24

EXAMPLE 6.7: Mm. 19-28.

. ' ST :
= ﬁ e = iFWI

Due to a large number of segments, the segmentation is given in two examples,
6.7.a and 6.7.b. The former contains segments with the lowest values, the latter
those with higher ones.

23 The lowest such value, RECREL(6-20,5-21A) = RECREL(6-20,5-21B) = 2, is after the handful of
zero values the lowest value in the entire set of RECREL values.

24 Results shown elsewhere suggest that it might serve well as a nexus also in other atonal works
by Schénberg. See examples 6-8 in Forte (1972:52-3). The excerpts are from Op. 20, Op. 19, No. 2, and
Op. 22. Given the value limit 20, all 4- and 5-pc SCs in the examples would be members of the
RECREL region 6-20.
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The value limit is twenty. The beginning of the passage has a long melodic line
in the right-hand part, the SC being 5-Z37 (20). (Ex. 6.7.b, mm. 19-24). It is fol-
lowed by the first instance of the nexus itself. (Ex. 6.7.a, m. 24). The left-hand pair
of three-note chords, stated three times within mm. 19-24, constitute together
4-20 (16). (Ex. 6.7.b). Different combinations of the chords and the melodic line
produce instances of 5-21A (2), 5-21B (2), 5-22 (20) and 5-Z17 (20).

Mm. 24-28 contain six instances of 6-20. They typically overlap so that each
of the many melodic "cells" which constitute the augmented triad class 3-12 par-
ticipates in at least two 6-20 instances. (Ex. 6.7.a). Among the other classes in mm.
24-28 are 5-22 (20), 5-Z17 (20), 4-19A (15) and 5-Z37 (20). (Ex. 6.7.b). The Vocabulary
has a strong representation, as 6-20, 4-20 and 5-22 are the only classes not belong-
ing to it.

A part of the passage participates also in a palindromic SC succession. See
section 6.4.4. For a description of the Vocabulary materials, see Forte (1982:150-4).

6.5.2.2 Measures 34-38: Nexus SC 6-20

The segmentation is again given in two examples, 6.8.a and 6.8.b. The former
contains segments with the lowest values, the latter those with values nearer to
the limit, 20. With the exception of the three pitches at the beginning of the
passage, the segmentation in Ex. 6.8.a covers the whole right-hand part. One
segment also contains two left-hand pitches. The segments constitute SCs 6-20
(0), 5-21A (2) and 5-21B (2).

EXAMPLE 6.8: Mm. 34-38.

34 fliefens

. o—ms

o
7
ks




169

An Analytical Application

sjuauidas [eUORIPPY ‘0Z JWI[ AN[eA "0g-9 UorBar TIYDTY Y Ut $DG Jo sadueysy] ‘g¢ w jo Juruwidaq - p¢ W :q'8'9 T1INVXE

N”m_NlmAle

9l “ﬁlv%

2:4a1z-s

0Z:212-S

LT Ye-€ AI/

o_“ﬁ_.&J

4/o>m 11628

2Zige-¢ T 3 7
@ 9 \#d qq aq N@nm-%{-,
/
) a3 |wp (= ag /
5 / W\ aqilfaa S a--f------ al] aa af [ao 5 (©
g —-fd 1 v [gd g | az
v ez-s | omﬂmulmL st nca_u?»%lwr\ ottty
0z:cez-s€—>__ _ | grizzcuw z:glz-g :
9l iL-b
‘8¢ e ‘0¢
Qv 5 #d AT qI-----; ---qd 4 494 D a 49a D g qg--------- qd Y qV 9
0:02-9 €—> 0:02-9 €—
o} g sz i 3 | @ g dq 5> # I
y
D) av| qd L dl- a@ I |[9© 5 @ [ ¥--m-m---- Y qd dq
g o| of (#d--------- #3] 4 v |qg g 49z |g9@-------- aa a ki
Nnc_NnmL N“m_mumL N“m_NumL 0:02-9 ‘_, 4 ENumL
‘8¢ e ‘9¢ 'S¢ be

"san[eA 1s3aMo[ YHim sjusw3ag "0z U] AN[eA "0Z-9 UoIBar THYDFA AU l $DG Jo sadueisu] '8¢ “w Jo Suuwdaq - ¢ W T8 TTINVXE



170 Chapter 6

The left-hand part, with its chromatic patterns, seems at first to be in stark con-
trast with any other dimension in the material. However, it turns out to be tied
to the RECREL region in a number of ways. (Ex. 6.8.b). Even if the left-hand
chromatic patterns are investigated separately, a textural factor suggests a connec-
tion between them and the nexus. When the lowest and highest pitches in each
four-note pattern (as well as the very last Ab, in the beginning of m.38) are anal-
ysed separately - not a very drastic step considering the emphasis each outer pitch
gets in the patterns - they constitute instances of 4-17 (16) in mm. 35-36, and 5-21B
(2) in mm. 37-38.

Instances of 3-3A (27) can be seen among the many 4-pc and 5-pc classes.
The value is above the limit 20, but was accepted as it is low with respect to the
cardinality difference. In the value group #3/#6, 27 belongs to the lowest 1% of
values.

The palindromic layer of this passage was examined in section 6.4.1. For a
Vocabulary material analysis, see Forte (1982:158-60).

6.5.2.3 Measures 38-48: Simultaneous RECREL Regions 6-20 and 8-28

The question of vertical and horizontal dimensions containing different har-
monic materials has been discussed in various sources, both at a general level
and specifically with Schénberg in mind. Teitelbaum (1965:112), for example, re-
ports clear differences in horizontal and vertical SC materials in Schénberg's
Opus 19. Isaacson (1992:198-9), in turn, refers to this aspect repeatedly when dis-
cussing notions that are of relevance to an analysis using a similarity measure.
Forte's emphasis is not as much on the differences between the horizontal and
vertical materials, as it is on the strictness with which the materials are struc-
tured in atonal Schénberg to form the "basic matrix of the music." Each newly
composed configuration may affect more than one dimension, creating new SC
or completing SCs already partially formed. The result is a strictly controlled, al-
beit often concealed mixture of multiple dimensions, in contrast to which the
surface of the music gives the appearance of utmost flexibility and freedom
(Forte 1972:62-3).

Observations like these are consistent with our own regarding the passage
under discussion. We believe that the music in mm. 38-48 realizes a harmonic
"basic matrix" with three separate strands. At the surface level is the Vocabulary
strand, its central elements being the six right-hand patterns constituting 6-16B,
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in m. 38 and again in mm. 42-43.25 The RECREL region 6-20 strand, in turn,
seems to have the function of governing the transpositional relations between
the surface materials. Counterpart pitches in the recurring 6-16B patterns, for ex-
ample, combine into instances of region 6-20 classes in many different ways.26
The 8-28 region strand, finally, establishes itself in more "local" segments, con-
sisting of all successive or simultaneous pitches within the assumed segment
boundaries. Hence the characterization "vertically oriented" region. The 8-28 re-
gion segments are often texturally ambiguous, combining parts of consecutive
surface elements, etc.

As analysed by RECREL, the two nexi are distant from each other.
RECREL(6-20,8-28) = 48. It was already seen that 6-20 has many low values with
the Vocabulary classes. The situation with 8-28 is different. The lowest value it
has with a Vocabulary class is 15, with 6-Z13. This hexad class is also its only sub-
set-class among the Vocabulary classes. With 6-Z42, the complement of 6-Z13,
8-28 has the value 25. All other values it has with the Vocabulary classes are be-
tween 30 and 51.

Our analysis of mm. 38-48 is in three parts. First we examine the 6-20 re-
gion in the measures where it clearly coincides with the 8-28 region. Then we
analyse the 8-28 region from the same viewpoint. Finally we investigate excerpts
where the functions of the two regions fluctuate. A region may be momentarily
non-existent, for example, the remaining one adopting its function during the

absence.

6.5.2.3.1 Nexus 6-20

The music to be examined consists of two excerpts, mm. 38-40 and 42-44.
(Examples 6.9 and 6.10). Our starting point is the instances of the augmented
triad class, 3-12, embedded in the music.27 In the 6-16B patterns the 3-12 instances
are combined from the simultaneous major thirds and the last 16th notes in

25 Each pattern comes with a simultaneous major third preceded by a 32nd note and followed by
three 16th notes. For a description of other Vocabulary materials, see Forte (1982:160-3).

26 This is the reason we characterized the 6-20 region as being of "horizontal orientation." Only se-
lected pitches in the patterns qualify as segment members, the pitches between them being simply
ignored.

27 Authors disagree on the importance of SCs of cardinality 3, 3-12 among them, as structural enti-
ties in the movement. See Forte (1972:44) and (1982:136), Wittlich (1974:43,48), Perle (1981:14-5).
We will consider the 3-12 instances as subformations of larger classes, not as independent structural
elements.
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each pattern. The major thirds are often on the beat, the higher pitch being both
the highest element in the pattern and the longest in duration. The highest pitch -
still sounds when the last 3-12 pitch is played.

Ex. 6.9.a gives the segmentation of the music in Ex. 6.9. Ex. 6.10.a, in turn, seg-
ments the Ex. 6.10 music. The 3-12 instances are also represented by chords.28

EXAMPLE 6.9: Mm. 38-40.

.
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EXAMPLE 6.10: Mm. 42-45.
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28 The chords preserve the pc contents of the corresponding segments. Octave positions of the notes,
however, may have been changed.
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The 3-12 instances constitute successions of chromatically related pcsets. In Ex.
6.9.a, pairwise combinations of successive 3-12 instances produce three instances
.of the nexus SC 6-20.29 In Ex. 6.10.a the harmonic rhythm is slower. The first and
second 3-12 instances constitute the same pcset, {1,5,9}. The third and the fourth
instances constitute also a single pcset, {0,4,8}. The succession of the four 3-12 in-
stances produces only one instance of 6-20.

The 6-16B patterns are not the only formations containing the 3-12 in-
stances. In m. 39 the instances E#-A-C# and E-G#-C are produced from succes-
sive pitches in the two arpeggiated patterns. (Ex. 6.9.a). M. 44, in turn, contains
two patterns resembling the 6-16B patterns but representing another SC. In both
patterns, an augmented triad can be combined from the higher note of the minor
third (being the highest element registrally and longest durationally) and the two
last sixteenth notes (Gb-D and Eb-Cb, respectively). The two 3-12 instances com-
bine into another instance of 6-20. (Ex. 6.10.a). It should be noted that all 3-12 in-
stances are embedded in instances of region 6-20 classes, 5-21A (2), 5-21B (2), 6-20
(0) and 5-Z37 (20). (Examples 6.9.a and 6.10.a).

In m. 38, the corresponding simultaneous major thirds in the two 6-16B
patterns together produce an instance of SC 4-17 (16). (Ex. 6.9.a). The higher
pitches in the four corresponding major thirds in mm. 42-43 constitute an in-
stance of 4-20 (16). The second and third of the same major thirds, Db-F and C-E,
together constitute an instance of 4-7 (16). Etc. (Ex. 6.10.a).

6.5.2.3.2 Nexus 8-28

The value limit of the RECREL region 8-28 was set slightly higher than the limit
20 of the previous region. Some 5-pc classes had multiple instances in the music,
and considering the relatively large size difference between them and the octad
class nexus, their values - usually 24 - were deemed low enough.30 All classes
given below as 8-28 region members are also its subset-classes. Subset-classes
with values over the limit will be shown as well, if they are considered to be of
importance.

29 We could go a step further and speculate why the 3-12 instances are placed in just this sort of
chromatic succession. When they are arranged in normal order, their corresponding elements consti-
tute SC 4-1, not a Vocabulary class but one contained in the Most Prominent Sets in Wittlich (1974).
Instances of this very same SC are extremely visible in the left-hand part of the previous measures,
in mm. 35-38.

30 24 is the lowest value in the entire value group #5/#8. The average is 37.
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With the exception of appearances of the two Vocabulary classes 6-Z213 (15) and
6-Z42 (25), the 8-28 region is a new element in the music, and contains many seg-
ments without clear textural profiles. The 6-20 region, on the other hand, has
appeared already in two previous passages. Because of this, it would not be con-
sidered surprising if especially clear instances of classes in the new region were to
be found in the music, consolidating its presence. Such instances are indeed to be
found. Before these are examined in the next section, we will see how the 8-28
region strand is present in the same measures that were analysed above from the
point of view of the 6-20 region. The measures segmented in Ex. 6.11 correspond
approximately with those in 6.9, the measures in Ex. 6.12 with those in Ex. 6.10.

In Ex. 6.11, fragments of the two 6-16B statements are combined with coin-
ciding and surrounding pitches to constitute instances of 8-28 region classes
5-10B (24), 5-25A (24), 6-Z13 (15) and 7-31A (6). The septad class and its inver-
sional counterpart, 7-31B, are the sole 7-pc subset-classes of the nexus. The arpeg-
giated patterns in m. 39 contain two more pentad classes, 5-16A (24) and 5-19B
(28). The value of the latter is above our limit, but it is nevertheless a subset-class
of 8-28, obviously belonging to the region.

Ex. 6.12 suggests that the presence of the 8-28 region is stronger in mm. 42-
44 than it was in the previous excerpt. SCs of cardinality 6 and larger predomi-
nate, resulting in lower RECREL values. This coincides with a small modifica-
tion in two of the 6-16B patterns. The durations of the simultaneous major
thirds are longer. The classes derived from the segments are 8-20 (0), 7-31B (6),
several overlapping instances of 6-Z23 (15), 6-27B (17), and again some pentad
classes with the value 24.

6.5.2.3.3 Interaction between the Two RECREL Regions

The developmental nature of the music in mm. 38-48 is evident, and, interest-
ingly, the type of harmonic processing we examine with the two simultaneous
RECREL regions seems to participate in producing this experience. The regions
are not just passively present, but a dynamic interaction takes place between
them.

Mm. 40-41

Our first example is from the beginning of the mm. 38-48 passage. In the 6-20 re-
gion, the first segments are more strongly profiled than those following in m. 39
and m. 40 (Ex. 6.9.a). The 8-28 region, in turn, was seen above as being not yet as
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strongly present as in mm. 42-44. Interestingly, these two notions, the 6-20 region
"fading out” and the 8-28 region waiting to be consolidated, are followed by a
momentary absence of the 6-20 region material and a forceful statement of set-
class 8-28.

EXAMPLE 6.13: Mm. 4041.

R 40!75 _ _ ~
5%; VLN IV ] o
L CRR LB e e o

Prp

s/ B
EXAMPLE 6.13.a: M. 40 - beginning of m. 41. Instances of set-classes in the RECREL region 8-28.
Value limit 25.

40. H.
Gb Eb C A C A
F D Db Bb Cb G# Cb G# F#
(E) Bb Db C Eb D || F# A T# A F DEbDED
........... Ao B o | row e |
T r ;
5—323:24 6-213: 15 ‘L.)B—ze;o L > 6-213: 15 Ly 4-3:38

Ex. 6.13.a gives the segmentation of m. 40 - beginning of m. 41 with 8-28 as the
nexus. The "pointillistic” texture in m.40 contains first an instance of 5-32B
(RECREL value 24 with 8-28), then an instance of the Vocabulary class 6-Z13 (15).
Another instance of the latter SC follows, much emphasized on account of its
length - 17 pitches - and the repetitions "freezing" the flow of music. In order to
complete this formation into an instance of 8-28, two additional pitches, D and
Eb, would be required. The pitches do follow immediately, becoming pointedly
clear in the written tremolo at the beginning of m. 41. The pitch combination
F-D-Eb-F# itself constitutes SC 4-3. Due to the large cardinality difference, the
RECREL value between it and the nexus is rather high, 38.

A short "dialogue" follows in the next measure, 41. Elements from the
two regions are arranged almost like different-coloured patches in a patchwork.
This is illustrated in examples 6.13.b and 6.13.c. Both segment the same measure,
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but with different nexi, 8-28 and 6-20, respectively. The long 8-28 statement, out
of which only the subset-class F-D-Eb-F# (SC 4-3) can be seen, is followed by an
instance of 7-21B (RECREL value 24 with 6-20). Without the lowest F - a sort of
"pedal point" pc as it is the lowest element in every chord in m. 41 - the same
formation constitutes the nexus SC 6-20 itself. After an identical restatement of
4-3, the passage ends with a hybrid of the two regions: when the combination
spanning the last beat of the measure is taken without F#, the lower pitch in the
written tremolo, and D#, acting as a "resolution" to the "suspended" E, the com-
bination constitutes 6-Z50 (15 with 8-28). When the same combination is taken
without the E, the result is again 7-21B, containing the instance of 6-20 as its sub-
set-class.

EXAMPLES 6.13.b and 6.13.c: Measure 41. 6.13.b (above line): Instances of SCs in the RECREL region
8-28. 6.13.c (below line): Instances of SCs in the RECREL region 6-20.

1.
& 8-28...
Eb D#
Bb
F# D F#
D EbDEDb|| F#GF#G [DEb D Eb
F B F
F
A 1 4-3:38 6-250: 15
L 4-3:38 :
4. P 7-21B:24 6-2)0:0
¥ 6~20:0 p
2 7-21B:24
v A 4
b ¥ E !D#
Bb Bb
F# D F# D
D EbDEDb i{(F#GF#G|'DEb D Ebi|F# GF# G
F F B
F F

Mm. 44-48
Our second example of interaction between the RECREL regions is in mm. 44-48.
The music in in Ex. 6.14. In outline the process is as follows: first, the 8-28 region
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assumes the function of its counterpart. It produces a horizontal 7-31B instance
in mm. 44-45 in exactly the same manner as the 6-20 region has done up to that
point, from corresponding pitches in recurring patterns. After this, the 6-20 re-
gion is again momentarily absent. A strong statement of SC 8-28 governs part of
m. 45 and the whole m. 46. A rapid shift, almost like a modulation, from region
8-28 to region 6-20 takes place in mm. 46-47. The octatonic region fades out and
the 6-20 region is consolidated.

The horizontal 8-28 region segment in m. 44, constituting 7-31B (6), is
shown in Ex. 6.12 above. The measure contains two patterns texturally related to
the preceding 6-16B patterns. Around the measure line 44-45 these are followed
by a third, reduced pattern, within which only the simultaneous minor third
and the preceding pitch remain. Together the three minor third-preceding pitch
combinations produce the 7-31B instance.

EXAMPLE 6.14: Mm. 44-48.

The 6-20 region is absent in m. 45, the 8-28 region providing two additional hori-
zontal statements. (Ex. 6.14.a). The succession consisting of the six right-hand
32nd notes that precede the simultaneous thirds, D#-C#-C-Eb-F#-Bb, constitutes
5-25A (value 24 with 8-28). The three right-hand major thirds in m. 46 produce
6-Z49 (15). Among other 8-28 region instances are 6-30A (22) and the above-men-
tioned long instance of 8-28.31

The shift from the 8-28 region to the 6-20 region, in mm. 46-47, is shown
with two different segmentations of the same measures (Ex. 6.14.a and Ex. 6.14.b).
The octatonic class is the nexus in the former example.

31 Despite the fabric of 8-28 region instances, the most obvious element in the music is the strong
left-hand statement of 6-Z10A.



0T ¥l AN[eA "0Z-9 UOI3aI THYDHY 3 UI $DS JO SIOULISU] “8H-9% "WIN ‘qH1'9 HTINYXH

onouloj ¥

T ; ¥ &
ouﬁmN-mAulﬁ _/am fqd - G5 b) 1 q3 # 9
#0 @ v(#0 0 Figa|[T]av): \ 4z : #0 #a
AN
49  Y-------+ E E AN E ad %)
I N AD a |
L

ZIUIZG e

180  Chapter 6

‘8b z _M—_N\lm 0:0Z~9 -« Ly Sv
+$Z:891 -G €— .
0:82-8 J ZZ:4Yoe-9 J
a3 b)) I qd 4 9
#00 Y #0 D I qd I qv ad # o)
49 Y--------- Y aq | 2 agd %)
1 | [ l«—, |LQ |
ey gt N — _
T

& / \ ¥ $Z:YSZ-S
‘8t A2 9y sell-v Sb

8e:Ll-¥ Sl:6vZ-9

"GZ I ANeA "8Z-8 U0IZ1 THADHA Y3 Ul §2G JO sadueIsu] £y wr Jo Surunaq - Gy W FT'9 ATINYXE



An Analytical Application 181

The smoothness of the shift is related to the five instances of SC 4-17 in mm. 46-
47, shown in both examples. 4-17 is the only class of cardinality four or larger in-
cluded in both 8-28 and 6-20, and is being used as a link between the two re-
gions.32

The two overlapping 4-17 instances produced by the successive right-hand
major thirds in m. 46 are of special interest. When taken together, they consti-
tute 6-Z49 (value 15 with 8-28. Ex.6.14.a). When taken with the major thirds B-G
and C-Ab in m. 47, the latter instance constitutes 6-20. (Ex.6.14.b). The 6-20 in-
stance, in turn, is linked to an instance of 5-21B (value 2 with 6-20) in mm. 47-48.
The last of the 4-17 instances, in the beginning of m. 47, combines with the pre-
ceding Bb into an instance of 5-16B (value 24 with 8-28. Ex.6.14.a). With the si-
multaneous and following pitches C, Ab, Fb and Eb it produces again an instance
of 6-20. (Ex.6.14.b). The 5-16B instance is the last element in the 8-28 region. The
rest of the instances consolidate the 6-20 region at the end of the passage.

32 Duye to the cardinality difference, the RECREL value between 8-28 and 4-17 is high, 38. Between
6-20 and 4-17 the value is 16.



B CHAPTER 7
CONCLUSIONS

We believe that the main conclusion to be drawn from this study is the following:
assessing SC similarity is a highly complicated task, calling for the participation of
many more elements than actually participate in a number of existing similarity re-
lations. This, no doubt, is reflected in some of the criticism in the theoretical litera-
ture. Commentators, even when spotting the potential benefits of some good rela-
tion, are sceptical that meaningful results can be obtained with the help of very
simple comparison methods. We concur with this view.

In order to have a solid foundation for subsequent discussion, we established
a set of criteria with which to evaluate various aspects of reliability and usefulness
in similarity relations. When analysed with these criteria, almost all of the previ-
ously presented relations turned out to perform their tasks less than succesfully.
Only one, Lewin's REL, was deemed acceptable.

Similarity relations not producing numeric values were seen to possess weak
descriptive powers. The criteria with which they deem two SCs maximally or mini-
mally similar were criticized as being inaccurate and concealing a gradation of intu-
itive similarity.

Among the actual similarity measures, two main approaches, based on pair-
ing subset-class instances by one-to-one or by one-to-many correspondence, were
identified. They were seen as having opposing advantages and disadvantages. One
approach could not be deemed better than the other.

All measures comparing only one subset-class cardinality at a time were seen
to produce at least some counterintuitive results, no matter how agreeable the com-
parison method itself seemed to be. Some measures also contained features that in
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our opinion distort their results and call their reliability into question. Besides the
properties they claimed to observe, they ended up taking others into account as
well. Furthermore, as we required that a measure should be able to discriminate be-
tween Z-related and inversionally related SCs, the total measures emerged as the
most promising approach.

It was seen, however, that comparing subset-classes of all cardinalities is not
unproblematic, either. In the values of some total measures, for example, certain
subset-class cardinalities were seen to have a weak representation, in those of an-
other measure a suspiciously strong one. Also, we argued that the intuitive starting
point of measuring SC similarity - the acceptance of less-than-maximal dissimilarity
between distinct SCs - must be applied to subset-classes as well. RECREL was then
offered as an application of this principle and many others observed in connection
with the previous measures.

Assessing the Validity of RECREL

The values RECREL produces were seen to correlate well with intuitive similarity
assessments. On average RECREL deems small-cardinality SC pairs dissimilar,
large-cardinality pairs similar. Transpositionally symmetric SCs participate often in
the pairs with the very lowest values, but are on average distant from a majority of
the classes. RECREL values belonging to inversionally related, Z-related, comple-
ment-related, inclusion-related (cardinalities n and n-1) and M-related pairs were
obtained and analysed. Among I- and Z-pairs, even the most distant values sug-
gested rather close similarity. On the other hand, among complement pairs, M-pairs
and inclusion-related pairs of cardinalities n and n-1, values could fluctuate consid-
erably. As far as Z-related and inversionally related SCs are concerned, all total
measures produced rather similar results, challenging the notion of a constant de-
gree of similarity between the classes.

An analysis of Schénberg's Opus 11, Number 1, suggested that RECREL can
be of assistance in producing meaningful analytical results. The observations pro-
vided by it were in agreement with those of previous analyses concerning the prin-
ciples with which certain structurally important SC materials are deployed in the
music. It suggested that SC similarity is not a dominant aspect'in the palindromic SC
successions, with the exception of the areas around the centers of symmetry. The
RECREL regions were used to examine aspects of the multi-dimensional harmonic
structuring that previous studies have identified in atonal Schénberg. The measure
helped in gathering SC materials whose harmonic characteristics were deemed simi-
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lar enough to be analytically promising in this context. The way these SC materials
were distributed and arranged, then, led to conclusions concerning harmonic coher-
ence in the music. It was noted that several seemingly independent compositional
processes could be active in the music at the same time. It was also found that the
palindromic SC successions and the harmonic arrangements identified with the
RECREL regions were not constantly present in the music, but in use only at times.
They were seen as compositional devices that help to enrich and structure the
movement, but not as principal elements from which the music stems.

Future Developments

It is evident that RECREL is only one application of the principles that were found
relevant in assessing SC similarity. Future developments could, for example, begin
by dividing the RECREL comparison procedure into two independent parts. The
first part would consist of the internal similarity measure which is evaluated repeat-
edly during a comparison, a position presently occupied by %RELpn. The second
part, then, would be the process which identifies the unilaterally embedded subset-
classes, arranges them into pairs for further comparisons, weights the values, up-
dates the upper-level values with lower-level ones, etc. Instead of %RELp, the inter-
nal measure could be, for example, some development trying to combine the advan-
tages of both one-to-one and one-to-many correspondence approaches, while
avoiding their disadvantages. In the second part, the comparisons between unilater-
ally embedded subset-classes could be expanded. In the present version two such
classes of cardinality n are compared only with respect to their subset-classes of car-
dinality n-1. The idea of a total measure could be applied here, too.

Combining similarity measures with other considerations constitute a whole
category of potentially fruitful developments. For example, the measures could be
used in designing other types of measure, those of pcset similarity. Pc collections are
routinely compared, of course, but usually only with respect to their SC identities,
not their distinct pcset identities. As writers note (Rahn 1989, Isaacson 1992:250-1),
the actual compositional deployment of pcsets would greatly benefit from a "theory
of instances."

Also the relation between SC similarity and aural similarity merits systematic
exploration. Based on our own experience, we believe that large numbers of chord
pairs derived from two SCs can offer meaningful reference points to purely abstract
assessments of SC similarity. In each pair, the chords are to be as similar as possible
with respect to registers, widths, pitch contents, movement between non-common
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pitches, and perhaps also spectral considerations, etc. One such application offered
useful background information during the initial stages of the Schénberg analysis
(section 6.2.1). Carefully designed and conducted listener group tests could be ar-
ranged in order to seek regularities in individual observations.

Experiences accumulated during chord pair comparisons could then be used
while studying the relations between SC similarity and qualitative similarity (section
1.3). Let us envisage one possible test arrangement. Several groups of SC pairs
would be selected so that, within each group, the pairs have a uniform value from a
similarity measure but are associated with many different qualitative characteristics
in the mind of the observer. The values would suggest increasing dissimilarity.
Comparably presented chord pairs would again be derived from the SC pairs. The
measured values, then, would offer exact points of reference when assessing (a) how
chord pairs within a single group but with different qualitative characteristics relate
to one another, and (b) how chord pairs from different groups but with similar
qualitative characteristics relate to one another. Possible viewpoints for (a) could be,
for example, whether the degree of aural similarity between the chord pairs seems
to fluctuate, and if it did, whether some pattern explaining the fluctuations would
emerge. With respect to (b) we could try to assess, for example, whether perceived
discrimination of similarity seems to be coarser among dissonant chords or among
consonant ones, among large chords or among small ones, etc. These results, in turn,
could be of assistance in a task already mentioned in section 1.3, i.e., the develop-
ment of weighting functions that assign degrees of dissonance for interval-classes
and subset-classes.

Computer Applications

Because of the complexities of measuring SC similarity, theoretical considerations
must be accompanied by a purely practical one, namely, the very act of using a mea-
sure. Calculating values by hand is arduous and sometimes, as when comparing SCs
of large cardinalities with the total measures, practically impossible. Even consulting
a matrix with hundreds of pre-calculated values is hopelessly counterintuitive for
many. Obviously, the meaningfulness of using a similarity measure depends on the
availability of a suitable computer application.

Use of a computer need not be confined to just assistance in calculating, sort-
ing and filtering values, but it can be used also for more complicated, analysis-re-
lated tasks. A simple analytical application was developed for the purposes of the
present study (section 6.5.1). The computer divided pitch successions into a large
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number of overlapping segments and compared these with RECREL. Despite certain
awkward elements in the application, the results proved useful.

Ideally, similarity measures could become independent modules in analytical
applications that are built around sophisticated score representation schemes.
Among other modules could be measures of pcset and qualitative similarity, for ex-
ample, as well as a wide range of powerful algorithms for pattern-matching,
searching, sorting, filtering, etc. Such an application should also allow the user to
define complex and detailed tasks which observe aspects of pitch organization in
combination with any other musical parameters. Placed at the command of a skilled
analyst, an application like this might produce interesting results supporting and
complementing more traditional analytical practices.




B GLOSSARY

The glossary summarizes the basic concepts associated with the RECREL similarity
measure. The entries are given in an order that approximately follows the course of
a RECREL comparison.

Recursive. Pertaining to a process that is inherently repetitive. The result of each
repetition is usually dependent upon the result of the previous repetition. See entry
"recursive routine."l

Recursive routine. In computing, a routine that may be used as a routine of itself,
calling itself directly or being called by another routine, one that it itself has called.2

Difference Vectors. Given the comparison %RELn(X,Y), a nonzero difference be-
tween corresponding components in the n-class %-vectors of X and Y indicates that
some subset-class S is not represented with an equal share in X and Y. S may be mu-
tually embedded in X and Y but with a different share, or it may be embedded in
only one of the classes. In both alternatives, one of the SCs has a unilaterally embed-
ded share of S in it. The nC%Vs reveal only indirectly which subset-classes have uni-
laterally embedded shares in the compared SCs, or how big the shares are. As this
information will be needed during a RECREL comparison, it is given separately
with the help of the difference vectors. To calculate these for X and Y from nC%V(X)
and nC%V(Y), each pair of corresponding components {cX,cY} produces the differ-
ences (cX - cy) and (cy - c¢X). The non-negative (cX - cy) differences are entered in

1 From Longley and Shain (1982), s.v. "recursive.”
2 From Longley and Shain (1982), s.v. "recursive routine."
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the difference vector of X, the non-negative (cy - cx) differences in that of Y.
Negative differences are replaced with zeros.

The two top rows of the example below give the 3-class %-vectors of SCs 5-1
and 5-23A, respectively. Below the indexes (row 3) are the difference vectors, giving
the unilaterally embedded triad class shares in 5-1 and 5-23A. The SC names of the
subset-classes are to be inferred from the indexes.
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Scaled Difference Vectors. Vectors derived from difference vectors. Like difference
vectors, except that their components are scaled so that their sum is always 100.
They show how large a percentual representation each unilaterally embedded sub-
set-class share has among all unilaterally embedded shares. To get the scaled ver-
sion, each difference vector component is divided by the sum of all components and
multiplied by 100. In the example above, the two lowest vectors are scaled difference
vectors belonging to 5-1 and 5-23A.

Difference Group. A group of weight/subset-class pairs derived from a scaled dif-
ference vector (see Weights). In each pair, the first element is a nonzero scaled dif-
ference vector component, interpreted to be the weight of the second element, i.e.,
the subset-class to which the component belongs.

In the example of the Difference Vector entry above, the second lowest vector,
a scaled difference vector belonging to SC 5-1, has five nonzero components.
Together with the SC names to which their indexes refer, these components consti-
tute the difference group {(43,3-1),(14,3-2A),(14,3-2B),(14,3-3A),(14,3-3B)}. Similarly,
the lowest vector, belonging to 5-23A, produces the difference group {(14,3-4A),
(14,3-7A),(29,3-7B),(29,3-9),(14,3-11A)}. Difference groups derived from a single
comparison can never contain same SCs.

Cross-correlation Group. A combination of two difference groups. To obtain a
cross-correlation group from difference groups A and B, each weight/subset-class
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element in A is paired with every element in B. If A and B contain n and m elements,
respectively, the cross-correlation group will contain (n*m) elements. Several steps
are needed before the weights and %RELp values belonging to the SC pairs have

been processed into a single value representing the whole cross-correlation group.

Weights. When the subset-class pairs in a cross-correlation group are compared
with %RELp, there are two independent aspects to every comparison: the %RELn
value itself, and the weight the comparison has among all the comparisons. As a
small component in a scaled difference vector indicates a modest standing for the
subset-class having it, comparisons between such SCs can cover much smaller parts
of the two unilaterally embedded subset-class materials than comparisons between
subset-classes having large components. To eliminate the distortion an equal repre-
sentation for each comparison would create, the components are interpreted to be
the weights of the classes and used to determine the relative importance of each

comparison.

Proportioned Weights. Combined weights derived from individual weights belong-
ing to SCs in two difference groups. A proportioned weight gives the share a given
SC pair has among all pairs in a cross-correlation group. If the two weights are w1
and w2, the proportioned weight of the pair is (w1 * w2)/100. The sum of all pro-

portioned weights in a cross-correlation group is always 100.

Weighted Values. When both the %RELn, values and the proportioned weights have
been calculated for all SC pairs in a cross-correlation group, each value v is weighted
with its corresponding proportioned weight wp. The weighted value vw = (v * wp)
/100. A weighted value reflects both the degree of similarity between the SCs and
the share the comparison has among all comparisons. The sum of all weighted
values in a cross-correlation group gives the weighted arithmetic mean of the val-
ues.

Branches. Independent strands in a RECREL comparison. Each branch gets its own
value, the final value being the average of all branch values. Given SCs X and Y of
cardinality 6, for example, the highest branch is 5. The process to obtain the branch-5
value is begun by comparing the 5-class %-vectors of X and Y with %REL5, and de-
riving a cross-correlation group containing 5-pc subset-class pairs for further com-
parisons. Calculation of branch 4 starts with the comparison %REL4(X,Y), branch 3
with the comparison %REL3(X,Y), etc. The lowest branch to be calculated is 2.
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Levels. %RELp comparison categories within a single branch. Given SCs X and Y of
cardinality 6 and branch 5, the first comparison, %REL5(X,Y), takes place at the
highest level, five. The cross-correlation group derived from 5C%V(X) and 5C%V(Y)
contains pairs of pentad classes, %REL4 comparisons of which constitute branch 5,
level 4. Each pentad class pair produces its own cross-correlation group. The %REL3
comparisons of the tetrad class pairs within these constitute branch 5, level 3, and so
on. The lowest level is 2. After this comes branch 4, containing comparisons at levels
4,3 and 2, etc.

Updating Values. Within branch n of the RECREL comparison between SCs X and
Y, the level n contains only one comparison, %RELn(X,Y). The level n-1 contains one
group of comparisons, the level n-2 a group of groups of comparisons, etc, When all
comparisons at levels from n to 2 have been completed, a single final value is deter-
mined for the whole branch. This is done by updating the value of each upper-level
comparison with those of the lower-level comparisons derived from it. First, the
sum of all weighted values is taken in each of the level-2 cross-correlation groups,
resulting in their weighted arithmetic means. Each sum s of each cross-correlation
group C updates the weighted value v of the level-3 SC pair P from which C was
derived: (s * vw)/100. The result is interpreted to be the new weighted value of P. P
itself belongs to one of the level-3 cross-correlation groups. The sum of all (updated)
weighted values is taken in each of these, and every group sum updates the value of
the level-4 comparison from which the group was derived, etc. This is repeated until
the weighted value sum of the only level-n-1 cross-correlation group has updated
the sole level-n value %RELR(X,Y). The result is the final value of the branch n.



B APPENDIX
RECREL DEMO PROGRAM MANUAL

INTRODUCTION

With this program for the Macintosh computer, the user can explore all basic as-
pects of the RECREL similarity measure. The functions are divided into two cat-
egories. The first category contains functions for retrieving, sorting, filtering and
analysing RECREL values. The second consists of functions illustrating the vari-
ous internal aspects of a RECREL comparison: vectors, difference and cross-corre-
lation groups, branch contents, branch results, etc.

GENERAL

To obtain a copy of the program

The program can be accessed through Internet and can be copied and distributed
freely. The address is ftp.funet.fi and the directory pub/sci/incoming. The name
of the file is recrel. The author can be contacted at the following addresses: cas-
tren@csc.fi (e-mail), or: Sibelius Academy, P.O. Box 86, 00251 Helsinki, Finland.

System requirements

A Macintosh computer with at least four megabytes of memory is required.
Under System 7 or later, memory addressing must be set to 24 bits. The pre-set
amount of memory reserved for the program is 6 megabytes, but can be easily ad-
justed in the Information window of the RECREL icon. In order to limit the size
of the application the program was written with an older version of Common
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Lisp. Because of this, the program may not work on 68040-based Macintosh mod-
els. If problems occur, try loading the program with the on-chip'memory cache
switched off.

An updated version of the program, being functionally identical from the
point of view of the user but based on a newer Lisp, will replace the current
version at a later date.

To run the program
Double-click the RECREL icon.

The windows

Once the program is loaded, two windows appear automatically. The first one is
the RECREL window, where the functions are manipulated. The other one, the
Listener window, is where the results are shown.

The BRECREL window contains buttons, editable text boxes and static texts.
The horizontal line indicates the division of the functions into the two cate-
gories described above.

Each of the 17 buttons - the boxes with rounded edges and text in them -
controls one function. A function is evaluated by clicking a button once.

The editable text boxes - the 30 sharp-edged boxes with SC names or num-
bers in them - contain arguments for the functions. The number of arguments
used by the functions varies from one to six. They are to be found to the right of
the functions using them, with the exception of the three arguments preceded by
the text "arguments for all functions below." The pre-set SC names and numbers
in the editable text boxes have no special significance. They constitute a precau-
tion only, since evaluating a function with empty arguments would cause an er-
ror message. To change an argument, place the cursor to the right of the current
one, click and drag leftwards while holding the button down, then enter a new
SC name or number.

The static texts below the editable text boxes indicate the specific arguments
which the boxes control.

Changing a font

When vectors wider than will fit on a small screen must be examined, a few al-
ternatives are available: using a smaller font in the Listener window, making
Listener broader than the screen, or both. To change the font, click into
Listener to make it the active window. Choose Font from the Edit menu and
select the Courier font. The output can be condensed even further by choosing




RECREL Demo Program Manual 193

Font Style in Edit and selecting Condense. If the result is already too con-
densed, activate Plain in Font Style. Only Courier or Monaco fonts are rec-
ommended as the characters in the other fonts are not evenly spaced.

Adjusting the Listener screen size

Activate Listener by clicking into it. Point the handle bar (the area where the
word Listener is written), click and drag leftwards while holding the button
down. Part of Listener is now out of sight. Point to the Size box (the small
square at the lower right-hand corner of Listener), click and drag rightwards
while holding the button down. The window becomes larger. Use the horizontal
scrollbar at the bottom of Listener to scroll left and right in the window.

Highlighting parts of the result lists

Some of the functions, especially Branch Contents 1 and 2, return typical Lisp re-
sults containing nested lists. Highlighting different parts of a result list is an ex-
cellent way of studying its composition. Seek the group of closing parentheses, ),
at the very end of a result list and place the cursor immediately to the right of the
leftmost one. Double-clicking highlights the innermost list. Move the cursor one
step to the right, double-click, and a list of lists is highlighted, and so on.

Printing on paper

The results can be printed on paper. Choose NewW in the File menu. A new win-
dow appears. Go to the Listener window, copy the material you want and paste
it to the new window. Choose Print from the File menu.

"Garbage collections”

From time to time Lisp will interrupt the normal execution of the program for
about 2-14 seconds. The length of time depends on the Macintosh model. During
these interruptions, or garbage collections, used memory cells are "recycled."
When a garbage collection takes place, the cursor is transformed into the letter

combination GC.

Some examples below may have been slightly edited for reasons of clarity.
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THE FUNCTIONS

1 MANIPULATING THE RECREL VALUES

RECREL Value

Description: Returns RECREL values belonging to pairs of SCs.
Usage:! RECREL-Value SC1 SC2

Details: The values are stored in a precalculated table. Retrieving them is fast.
SC1 and SC2 may be any two SCs between cardinalities 2 and 12. The order be-
tween them is free.

Example: (RECREL-Value 3-1 3-2A) returns RECREL(3-1,3-2A) = 33

SC Name Help
Description: Returns the SC names in a cardinality-class.
Usage: SC-Name-Help cardinality-class

Details: Before a given RECREL demo program function is evaluated, the argu-
ments are sent to a function named Argument-Check. Among other things this
function examines that SC names are written correctly. If a mistake is detected or
a SC name given without the extra labels A or B used in this study, an error mes-
sage is generated and the evaluation of the original function prevented. When
in doubt about the proper way of writing SC names, use SC-Name-Help. cardi-
nality-class may vary between 2 and 12.

Example: (SC-Name-Help 3) returns

Cardinality-Class 3:

{3-1 3-2A 3-2B 3-3A 3-3B 3-4A 3-4B 3-5A 3-5B 3-6 3-7A 3-7B 3-8A 3-8B 3-9
3-10 3-11Aa 3-11B 3-12)

1 In the Usage and Example entries, each function name Function Name will be written as a single
character string Function-Name, in order to make the examples resemble actual Lisp function eval-
uations more closely.
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Ind Val Group SC/#n-#m

Description: Forms an individual value group and returns information describ-
ing its value distribution.

Usage: Ind-Val-Group-SC/#n-#m SC n m

Details: As the individual value group SC/#n-#m may contain hundreds of
values, the function does not return the group itself. The result is a table con-
taining details of the group. The entries are the following: lowest, average and
highest values; number of all values and distinct values; percentiles, giving the
number of values below 10th percentile, 10th, 25th, 50th (the median), 75th and
90th percentiles and the number of values above the 90th percentile.

SC may be any SC between cardinalities 2 and 12. n - m may be any range
of cardinality-classes where (1) n <m, (2) 2 <n,m < 12. Whenever n <#5C <m,
the value of the pair {SC,5C} is omitted from the value group.

Example: (Ind-Val-Group-SC/#n-#m 3-1 3 3) returns

Individual Value Group: 3-1/#3-#3

Lowest Value: 33 Average Value: 71 Highest vValue: 100
Number of Values: 18 Number of Distinct Values: 3
Percentiles:

# of vals < 10th: 2

10th: 43.2

25th: 67.0

Median: 67.0

75th: 67.0

90th: 100.0

# of Vals > 90th: 0

num Closest in SC/#n-#m

Description: Returns a required number of lowest values in an individual value
group.

Usage: num-Closest-in-SC/#n-#m SC num n m

Details: First, the individual value group SC/#n-#m is formed. The values are
then sorted in ascending order and num first values returned as the result. If
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num exceeds the number of all values in SC/#n-#m, the entire sorted value
group is returned.

SC may be any SC between cardinalities 2 and 12. n - m may be any range
of cardinality-classes where n <m and 2 <n,m < 12. Whenever n < #5C < m, the
value of the pair {SC,SC} is omitted from the value group. Each sublist in the re-
sult contains SC, another SC and the RECREL value between the two.2

Example: (num-Closest-in-SC/#n-#m 3-1 10 3 4) returns

The 10 SC pairs with the lowest values in the
Individual Value Group 3-~1/#3-#4:

((3-1 4-1 17) (3-1 3-2A 33) (3-1 3-2B 33) (3-1 4-2A 38) (3-1 4-2B 38)
(3-1 4-3 50) (3-1 4-4a 50) (3-1 4-4B 50) (3-1 4-5A 50) (3-1 4-5B 50))

Lim1 -> Lim2 in SC/#n-#m

Description: Returns all values between required lower and upper limits in an
individual value group.

Usage: Lim1->Lim2-in-SC/#n-#m SC n m limit1 limit2

Details: When the individual value group SC/#n-#m is formed, only the values
between limit]l and limit2, inclusive, are retained. These are sorted in ascending
order and returned as the result. limitl - limit2 may be any range of values so
that limitl < limit2 and 0 < limitl, limit2 < 100. When limitl = 0 and limit2 = 100,
the entire sorted value group SC/#n-#m is returned.

SC may be any SC between cardinalities 2 and 12. n - m may be any range
of cardinality-classes where n <m and 2 < n,m < 12. Whenever n <#5C < m, the
value of the pair {SC,5C} is omitted from the value group. Each sublist in the re-
sult contains SC, another SC and the RECREL value between the two.

Example: (Lim1->Lim2-in-SC/#n-#m 3-1 3 4 0 40) returns

The SC Pairs with values between 0 and 40 in the
Individual Value Group 3-1/#3-#4:

((3-1 4-1 17) (3-1 3-2B 33) (3-1 3-2A 33) (3-1 4-2B 38) (3-1 4-2A 38))

2 As the sublists contain both SC pairs and values, the results are in fact combinations of (sorted and
shortened) comparison groups and value groups. For the sake of simplicity we will refer to them
here only as value groups. Similar result list composition will be used with a number of other func-
tions as well.
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Val Grp #nl-#ml/#n2-#m?2

Description: Forms a value group and returns information describing its value
distribution.

Usage: Val-Grp-#nl-#m1/#n2-#m2 nl ml n2 m2

Details: As the value group #nl-#ml1/#n2-#m2 may contain thousands of val-
ues, the function does not return the group itself. The result is a table containing
details of the group. The entries are as follows: lowest, average and highest val-
ues; number of all values and distinct values; percentiles, giving the number of
values below 10th percentile, 10th, 25th, 50th (the median), 75th and 90th per-
centiles and the number of values above the 90th percentile.

To compile #n1-#m1/#n2-#m2, each SC in the range of cardinality-classes
nl -ml is compared to every SC in the range of cardinality-classes n2 - m2.
Whenever the two ranges intersect, the values of all SC pairs {X,X} are omitted
from the value group, a given pair {X,Y} = {Y,X} providing only one value.

nl - m1 and n2 - m2 may be any two ranges of cardinality-classes where (1)
nl<ml, 2)n2<m2,3)2<nl,mln2,m2 <12.

Important: Caution is to be exercised when selecting the two ranges of cardinal-
ity-classes. Two broad ranges may result in a value group containing tens of
thousands of values, taking a substantial amount of calculation time. It is rec-
ommended that the function is first tested with the smallest value groups.

Example: (Val-Grp-#nl-#m1/#n2-#m2 3 3 4 4) returns

Value Group: #3-#3/#4-#4
Lowest Value: 0 Average Value: 56 Highest Value: 100

Number of Values: 817 Number of Distinct Values: 13

Percentiles:
# of Vals < 10th: 76
10th: 38.0
25th: 50.0
Median: 54.0
75th: 67.0
90th: 83.0

# of vals > 90th: 14
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Lim1 -> Lim?2 in Val Grp

Description: Returns all values between required lower and upper limits in a
value group.

Usage: Lim1->Lim2-in-Val-Grp nl ml n2 m2 limit1 limit2

Details: When the value group #nl-#ml/#n2-#m2 is formed, only the values
between limitl and limit2, inclusive, are retained. These are sorted in ascending
order and returned as the result.

limit1 - limit2 may be any range of values where (1) limitl < limit2, (2) 0 <
limitl,limit2 < 100. When limitl = 0 and limit2 = 100, the entire sorted value
group #nl-#m1/#n2-#m2 is returned.

nl - m1 and n2 - m2 may be any two ranges of cardinality-classes where (1)
nl<ml, (2)n2<m2,(3)2<nlmln2,m2 <12.

Important: Caution is to be exercised when selecting the two ranges of cardinal-
ity-classes. It is recommended that the function is first tested with small value
groups and narrow distances between limit]l and limit2.

Example: (Lim1->Lim2-in-Val-Grp 3 3 4 4 0 20) returns

The SC pairs with values between 0 and 20 in the
Value Group #3-#3/#4-#4:

((3-10 4-28 0) (3-8B 4-25 0) (3-8a 4-25 0) (3-5B 4-9 0)
(3-5A 4-9 0) (3-11B 4-26 17) (3-11B 4-20 17) (3-11B 4-17 17)
(3-11A 4-26 17) (3-2A 4-3 17) (3-11A 4-20 17) (3~11A 4-17 17)
(3-9 4-23 17) (3-8B 4-21 17) (3-8A 4-21 17) (3-7B 4-26 17)
(3-7B 4-23 17) (3-7B 4-10 17) (3-7A 4-26 17) (3-7A 4-23 17)
(3-7a 4-10 17) (3-6 4-21 17) (3-5B 4-8 17) (3-5A 4-8 17)
(3-4B 4-20 17) (3-4B 4-8 17) (3-4B 4-7 17) (3-4a 4-20 17)
(3-4a 4-8 17) (3-4Aa 4-7 17) (3-3B 4-17 17) (3-3B 4-7 17)
(3-3B 4-3 17) (3-3a 4-17 17) (3-3A 4-7 17) (3-3A 4-3 17)
(3-2B 4-10 17) (3-2B 4-3 17) (3-2B 4-1 17) (3-2A 4-10 17)
(3-2A 4-1 17) (3-1 4-1 17))




RECREL Demo Program Manual 199

2 FUNCTIONS ILLUSTRATING ASPECTS OF A RECREL
COMPARISON

Important: Unlike the functions above, those below do not retrieve their results
from precalculated tables, but calculate them separately each time. In order to
prevent the RECREL demo program from becoming too large, as well as to en-
sure that unrealistically demanding comparisons are not attempted, some re-
strictions were placed upon the arguments which the functions will accept. No
SCs of cardinalities larger than seven may be entered as arguments. For n-class
vectors, n-class %-vectors, %RELpn comparisons, etc., the highest accepted n is
five. n may not exceed the cardinalities of the SCs. Incorrect arguments will
cause an error message.

All functions below perform calculations with full accuracy, but round
their final results either to the nearest integers or to one decimal place. In the ex-
amples of Chapter four, however, already intermediate results were rounded to
one decimal place. When comparing Chapter four results to those returned by
the demo program, slight differences may therefore occur.

As the components in %-vectors, the weights in difference groups, etc., are
shown rounded, their sum may not always be exactly 100. A vector component
100 is replaced with C.

nCV(SC) and nC%V(SC)

Description: Returns n-class vectors and n-class %-vectors.

Usage: nCV(5C)-and-nC%V(SC) SC n

Details: The result gives nCV(SC) first, then nC%V(SC) and below these, a row of
indexes.

Limits for the arguments: (1) 2<5C<7,(2)2<n<5,(3)n<SC.

Example: (nCV(SC)-and-nC%V(SC) 5-1 3) returns

Top: 3CV(5-1) Middle: 3C%V(5-1) Bottom: Indexes

3 2211000010 O0O0CO0O0O0TO0O0CTO
3020201010 0 O O 010 0 O 0 O O O O O O
12 2 3 3 4 4 5 5 6 7 7 8 8 91011 11 12
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%RELnR(SC1,5C2)
Description: Returns %RELn values.
Usage: %RELn SC1 SC2 n

Details: Returns the (rounded) value of the comparison %REL#,(SC1,5C2).
Limits for the arguments: (1) 2 < #5C1,#5C2<7, (2)2<n <5, (3) n <#SCI1#5C2.

Example: (%RELp 5-1 5-35 3) returns  $REL3 (5-1,5-35) = 90

nC%V & Diff Vec Pairs

Description: Returns pairs of n-class %-vectors, difference vectors and scaled dif-
ference vectors.

Usage: nC%V-&-Diff-Vec-Pairs SC1 SC2 n

Details: The n-class %-vectors of SCI and SC2 are given first, then a row of in-
dexes, the difference vectors of SCI and SC2, respectively, another row of indexes
and, finally, the scaled difference vectors of SC1 and 5C2, respectively. The value
of the comparison %RELy(SC1,5C2) is given above the vector pairs. Limits for
the arguments: (1) 2 <#SCI1#5C2<7,(2)2<n <5, (3) n <#SCI1#SC2.

Example: (nC%V-&-Diff-Vec-Pairs 5-1 5-35 3) returns

$REL3 (5-1,5-35) = 90

Top pair: 3C%V(5-1) and 3C%V(5-35)
Middle pair: Difference Vectors
Bottom pair: Scaled Difference Vectors
3rd and 6th rows: Indexes

3020201010 0 O 0 010 O O O O O O O O O
0 0 0 0 0 0 0 0 0102020 0 030 01010 O

1 2 2 3 3 4 4 5 5 6 7 7 8 8 91011 11 12

3020201010 0 0 0 0 0 0 0 O 0 0O 0 0 0 O
0 0 0 00O OO 0O 0 02020 0 030 01010 O

12 2 3 3 4 4 5 5 6 7 7 8 8 91011 11 12

0 0 0 0 O
0 00 00O O O O 02222 0 033 01111 O
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Difference Groups
Description: Returns difference groups.
Usage: Difference-Groups SCI SC2 n

Details: The difference groups are derived from the n-class %-vectors of SCI and
SC2, first by determining the difference vectors and scaled difference vectors,
then collecting the nonzero components (weights) and their indexes (subset-class
names) from the latter.

As difference groups are not derived from level-two comparisons, the lim-
its for the arguments are as follows: (1) 3 < #5C1,#5C2<7,(2)3<n <5,(3)n <
#SCI1,#5C2.

Besides the difference groups, the result gives also the value of the com-
parison %REL#4(SC1,5C2).

Example: (Difference-Groups 5-1 5-35 3) returns

The two Difference Groups derived from 3C%V(5-1) and 3C%V(5-35).
%REL3 (5-1,5-35) = 90. Each sublist contains a weight and a SC name

Difference Group of 5-1:
((33 3-1) (22 3-2a) (22 3-2B) (11 3-3A) (11 3-3B))

Difference Group of 5-35:
((22 3-7a) {22 3-7B) (33 3-9) (11 3-11a) (11 3-11B))
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Cross-Corr Group 1

Description: Returns cross-correlation groups containing weights and SC names.
Usage: Cross-Corr-Group-1 SC1 SC2 n

Details: The cross-correlation group is derived from the n-class %-vectors of SC1
and SC2. First, the difference vectors, scaled difference vectors and difference
groups are derived from the two nC%Vs. Then, each SC in one difference group
is combined with every SC in the other. The result is a level-n-1 cross-correlation
group.

Cross-correlation groups are not derived from level-two comparisons.
Accordingly, the limits for SC1, SC2 and # are the following: (1) 3 < #SC1,#5C2 <
7,(2)3<n<5,(3) n <#SC1#SC2.

Each sublist in the result refers to one %RELy-] comparison, containing
first the weights of the two subset-classes belonging to SC1 and SC2, respectively,
then the subset-classes themselves. The result gives also the value of the com-
parison %RELy(SC1,5C2), as well as the size of the cross-correlation group.

Example:3 (Cross-Corr-Group-1 5-1 5-35 3) returns

A level-2 Cross-Correlation Group derived from 3C%V(5-1) and 3C%V(5-35).
$REL3 (5-1,5-35) = 90.

In each sublist, the four entries are:

(1) the weight of the subset-class belonging to 5-1,

(2) the weight of the subset-class belonging to 5-35,

(3) the subset-class belonging to 5-1,

(4) the subset-class belonging to 5-35.

Number of sublists: 25.

(33 22 3-1 3-7a) (33 22 3-1 3-7B) (33 33 3-1 3-9) (33 11 3-1 3-11A)(33 11 3-1
(22 22 3-2A 3-7A) (22 22 3-2A 3-7B) (22 33 3-2A 3-9) (22 11 3-2A 3-11A) (22 11 3-2
(22 22 3-2B 3-7A) (22 22 3-2B 3-7B) (22 33 3-2B 3-9) (22 11 3-2B 3-11A) (22 11 3-2B 3-11B)
(11 22 3-3a 3-7a) (11 22 3-3A 3-78B) (11 33 3-3A 3-9) (11 11 3-3A 3-11a) (11 11 3-3
(11 22 3-3B 3-7A) (11 22 3-3B 3-7B) (11 33 3-3B 3-9) (11 11 3-3B 3-11a) (11 11 3-3

3 Result list printed with a smaller font to illustrate the cross-correlation group composition better.
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Cross-Corr Group 2

Description: Returns cross-correlation groups containing proportioned weights,
SC names and %RELp values.

Usage: Cross-Corr-Group-2 SC1 SC2 n

Details: The cross-correlation group is derived from the n-class %-vectors of SC1
and SC2. First, the difference vectors, scaled difference vectors and difference
groups are derived from the two nC%Vs. Then, each SC in one difference group
is combined with every SC in the other. The result is a level-n-1 cross-correlation
group.

Cross-correlation groups are not derived from level-two comparisons.
Accordingly, the limits for SCI, SC2 and n are as follows: (1) 3 < #5C1 #5C2 <7,
(2)3<n<5,(3)n <#SC1#SC2.

Each sublist in the result refers to one %RELy-7 comparison and contains
first the proportioned weight of the two subset-classes belonging to SCI and SC2,
respectively, then the subset-classes themselves, and as the last entry the
%RELy-1 value between the subset-classes. The result gives also the value of the
comparison %RELy;(SC1,5C2) and the size of the cross-correlation group.

Example:? (Cross-Corr-Group-2 5-1 5-35 3) returns

A level-2 Cross-Correlation Group derived from 3C%V(5-1) and 3C%V(5-35).
%REL3 (5-1,5-35) = 90.

In each sublist, the four entries are:

(1) the proportioned weight of the subset-class pair,

(2) the subset-class belonging to 5-1,

(3) the subset-class belonging to 5-35,

(4) the %REL2 value of the subset-class pair.

Number of sublists: 25.

((7 3-1 3-7a 67) (7 3-1 3-7B 67) (11 3-1 3-9 67) (4 3-1 3-11a 100) (4 3-1 3-11B 100)
(5 3-2A 3-7A 33) (5 3-2a 3-7B 33) (7 3-2A 3-9 67) (2 3-2A 3-11A 67) (2 3-2A 3-11B 67)
(5 3-2B 3-7A 33) (5 3-2B 3-7B 33) (7 3-2B 3-9 67) (2 3-2B 3-11la 67) (2 3-2B 3-11B 6&7)
(2 3-3a 3-7A 67) (2 3-3A 3-7B 67) (4 3-3a 3-9 100) (2 3-3A 3-11A 33) (1 3-3A 3-11B 33}
(2 3-3B 3-7a4 67) (2 3-3B 3-7B 67) (4 3-3B 3-9 100) (1 3-3B 3-11A 33) (1 3-3B 3-11B 33))

4 Result list printed with a smaller font to illustrate the cross-correlation group composition better.
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Cross-Corr Group 3

Description: Returns cross-correlation groups containing SC names and
weighted %RELn values.

Usage: Cross-Corr-Group-3 SCI SC2 n

Details: The cross-correlation group is derived from the n-class %-vectors of SC1
and SC2. First, the difference vectors, scaled difference vectors and difference
groups are derived from the two nC%Vs. Then, each SC in one difference group
is combined with every SC in the other. The result is a level-n-1 cross-correlation
group.

Cross-correlation groups are not derived from level-two comparisons.
Accordingly, the limits for SC1, SC2 and n are as follows: (1) 3 < #SC1,#5C2 <7,
(2)3<n<5,(3) n<#SCL#SC2.

Each sublist in the result refers to one %RELy-1 comparison, containing
two subset-classes belonging to SCI and SC2, respectively, and the weighted
%RELy-1 value of the subset-class pair. The result gives also the value of the
comparison %REL;(5C1,5C2) and the size of the cross-correlation group.

Example: (Cross-Corr-Group-3 5-1 5-35 3) returns

A level-2 Cross-Correlation Group derived from 3C%V(5-1) and 3C%V(5-35).
$REL3 (5-1,5-35) = 90.

In each sublist, the three entries are:

(1) the subset-class belonging to 5-1,

(2) the subset-class belonging to 5-35,

(3) the weighted %RELy value of the subset-class pair.

Number of sublists: 25.

((3-1 3-7A 5) (3-1 3-7B 5) (3-1 3-9 7) (3-1 3-11a 4) (3-1 3-11B 4)
(3-2A 3-7A 2) (3-2A 3-7B 2) (3-2A 3-9 5) (3-2A 3-11Aa 2) (3-2A 3-11B 2)
(3-2B 3-7A 2) (3-2B 3-7B 2) (3-2B 3-9 5) (3-2B 3-11a 2) (3-2B 3-11B 2)
(3-3A 3-7A 2) (3-3A 3-7B 2) (3-3A 3-9 4) (3-3A 3-11A 0) (3-3A 3-11B 0)
(3-3B 3-7A 2) (3-3B 3-7B 2) (3-3B 3-9 4) (3-3B 3-11A 0) (3-3B 3-11B 0))
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Branch Contents 1

Description: Displays the level composition of a branch as well as the contents of
the individual levels, returning proportioned weights, SC names and %RELn

values.
Usage: Branch-Contents-1 SC1 SC2 n

Details: The function gathers all %RELp comparisons in branch n of the RECREL
comparison between SC1 and SC2. The level composition can be inferred from
the indentation of the result. The sole level-n comparison is the leftmost one at
the top. The comparisons at each of the lower levels n-1, n-2,...2 are laid out
stepwise to the right. Several level-two comparisons may be placed on a single
row.

Each sublist in the result contains a proportioned weight, two SCs and a
%RELp value. The proportioned weights and values are rounded to one decimal
place.

Limits for the arguments: (1) 2 < #SCI1,#SC2<7,(2)2<n <5, 3) n <
#SC1#5C2.

Example:® (Branch-Contents-1 5-1 5-35 3) returns

Branch 3 of the RECREL comparison between SCs 5-1 and 5-35.
The entries in each sublist: a proportioned weight, two SCs and a %RELp

value.

(((100.0 5-1 5-35 90.0)

((7.4 3-1 3-7A 66.7) (7.4 3-1 3-7B 66.7) (11.1 3-1 3-9 66.7)
(3.7 3-1 3-11A 100.0) (3.7 3-1 3-11B 100.0) (4.9 3-2A 3-7A 33.3)
(4.9 3-2A 3-7B 33.3) (7.4 3-2A 3-9 66.7) (2.5 3-2A 3-11A 66.7)
(2.5 3-2A 3-11B 66.7) (4.9 3-2B 3-7A 33.3) (4.9 3-2B 3-7B 33.3)
(7.4 3-2B 3-9 66.7) (2.5 3-2B 3-11A 66.7) (2.5 3-2B 3-11B 66.7)
(2.5 3-3A 3-7A 66.7) {2.5 3-3A 3-7B 66.7) (3.7 3-3A 3-9 100.0)
(1.2 3-3A 3-11A 33.3) (1.2 3-3A 3-11B 33.3) (2.5 3-3B 3-7A 66.7)
(2.5 3-3B 3-7B 66.7) (3.7 3-3B 3-9 100.0) (1.2 3-3B 3-11A 33.3)
(1.2 3-3B 3-11B 33.3))))

5 Here, as well as in the example of the following function, # is only three, resulting in a branch
with a very simple level composition. Branches with a higher 7, being more interesting in this re-
spect, were too large to serve as examples.
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Branch Contents 2

Description: Displays the level composition of a branch as well as the contents of
the individual levels, returning SC names and weighted %RELp values.

Usage: Branch-Contents-2 SC1 5C2 n

Details: The function gathers all %RELp comparisons in branch » of the RECREL
comparison between SCI1 and SC2. The level composition can be inferred from
the indentation of the result. The sole level-n comparison is the leftmost one at
the top. The comparisons at each of the lower levels n-1, n-2,...2 are placed step-
wisely to the right. Several level-two comparisons may be placed on a single row.

Each sublist in the result contains two SCs and a weighted %RELyp value.
The values are rounded to one decimal place.

Limits for the arguments: (1) 2 < #5C1,#5C2<7,(2)2<n <5,(3) n <
#5C14#5C2.

Example: (Branch-Contents-2 5-1 5-35 3) returns

Branch 3 in the RECREL comparison between SCs 5-1 and 5-35.
The entries in each sublist: two SCs and a weighted %RELp value.

(((5-1 5-35 90.0)
((3-1 3-7A 4.9) (3-1 3-7B 4.9) (3-1 3-9 7.4) (3-1 3-11A 3.7)
(3-1 3-11B 3.7) (3-2A 3-7A 1.6) (3-2A 3-7B 1.6) (3-2A 3-9 4.9)
(3-2A 3-11Aa 1.6) (3-2A 3-11B 1.6) (3-2B 3-7A 1.6) (3-2B 3-7B 1.6)

(3-2B 3-9 4.9) (3-2B 3-11A 1.6) (3-2B 3-11B 1.6) (3-3A 3-7A 1.6)
(3-3a 3-7B 1.6) (3-3A 3-9 3.7) (3-3A 3-11A 0.4) (3-3A 3-11B 0.4)
(3-3B 3-7A 1.6) (3-3B 3-7B 1.6) (3-3B 3-9 3.7) (3-3B 3-11A 0.4)

(3-3B 3-11B 0.4))))
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Branch Value
Description: Returns the final value of a branch.
Usage: Branch-Value SC1 SC2 n

Details: The function determines the weighted values of all %RELn comparisons
in branch n of the RECREL comparison between SCI and SC2, updates higher-
level values with lower-level ones and derives a final branch value. The result
is rounded to one decimal place.

Limits for the arguments: (1) 2 < #SCI#SC2<7,(2)2<n <5, (3)n <
#SC1,4#5C2.

Example: (Branch-Value 5-1 5-35 3) returns

Branch 3 of the RECREL comparison between SCs 5-1 and 5-35.
Branch value: 57.0.
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